Contribution of promoter architecture to Pol II initiation by scanning in Saccharomyces cerevisiae

Introduction:

- Eukaryotic protein-coding genes are transcribed by RNA polymerase II (Pol II), which is highly conserved in structure.
- As the first step of transcription, initiation determines where and how efficiently transcription initiates and therefore is a key component of gene expression.
- Pol II initiation in yeast proceeds by a proposed promoter scanning mechanism. (Panel 1)
- To understand why any individual transcription start site (TSS) is used, we are determining how scanning is affected by or interacts with different promoter "architectures". (Panel 1 & 2)

Method: Designed promoter variant libraries where promoter attributes are systematically varied in a controlled fashion (Panel 2)

Main Results:

- Pol II shows distinct sequence preference at positions around TSS. (Panel 5)
- Pol II mutants change overall efficiency for $A_{-8}Y_{-1}R_{+1}$ and $B_{-8}Y_{-1}R_{+1}$ motifs but at different levels. (Panel 6)

Goal: By combining data from these libraries, our aim is to quantitatively model and predict Pol II initiation distributions for any particular promoter.

Systematic analysis of promoter architectural effects on Pol II initiation

I. Pol II "TSS" libraries contain promoter variants with randomized positions in a specific TSS region.

II. Pol II "Flux" library contains promoter variants with different expression levels and TATA-TSS distance, driven by UASs with differing TATA classes and strengths.

III. Core promoter-TSS distance libraries contain ADH1 (TATAcontaining) and RPS5 (TATA-less) promoter variants with shortened or lengthened distances between the core promoters and TSS.

IV. Scanning region sequence composition library contains ADH1 promoter variants with differing T base composition.

6

Pol II shows distinct sequence preference at positions around TSS

Yunye Zhu and Craig D. Kaplan

Department of Biological Sciences, University of Pittsburgh

B. E1103G shows similar effects on $A_{-8}Y_{-1}R_{+1}$ and $B_{-8}Y_{-1}R_{+1}$ variants at same WT efficiency level. C. F1086S shows reduced effects on A-8Y-1R+1 relative to B-8Y-1R+1 motifs. One potential explanation is -8A compensates for Pol II active site defect, considering that the direct contact between TFIIB and -8 position is proposed to hold TSSs in the active site longer during scanning.

- Kaplan CD, Jin H, Zhang IL, Belyanin A: Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012, 8(4):e1002627.
- Qiu C, Jin H, Vvedenskaya I, Llenas JA, Zhao T, Malik I, Visbisky AM, Schwartz SL, Cui P, Čabart P et al: Promoter scanning during transcription initiation in Saccharomyces cerevisiae: Pol II in the "shooting gallery". bioRxiv 2020.
- Lubliner S, Regev I, Lotan-Pompan M, Edelheit S, Weinberger A, Segal E: Core promoter sequence in yeast is a major determinant of expression level. Genome *Research* 2015, 25(7):1008-1017.
- Vvedenskaya IO, Zhang Y, Goldman SR, Valenti A, Visone V, Taylor DM, Ebright RH, Nickels BE: Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields. Mol Cell 2015, 60(6):953-965.
- Sainsbury S, Niesser J, Cramer P: Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature 2013, 493(7432):437-440.

upstream of the initiation region select appropriate transcription A. TSS relative efficiency is used TSS Relative Efficiency is defined this position with the yield at all