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Notch signaling regulates the timing of neural stem cell entry 
into quiescence in Drosophila 

Abstract:

Results:

Most somatic stem cells are maintained in a quiescent state during development and in adult tissues. They switch between periods of proliferation and quiescence in response to 
nutrients, to maintain tissue homeostasis or to repair damaged tissue. Using Drosophila neural stem cells (known as neuroblasts, NB), we are interested in understanding how 
quiescence versus proliferation decisions are regulated during development. We use Drosophila as a model system because of the availability of genetic tools and because the 
population of neuroblasts is relatively simple and defined. Most neuroblasts in the central brain enter and exit quiescence in a nutrient-dependent and PI3-kinase regulated manner 
(Fig 1). To better understand how neural stem cell proliferation decisions are regulated we carried out a large-scale RNAi screen. From this screen, we identified components of the 
Notch signaling pathway. Notch is an evolutionarily conserved juxtacrine cell signaling pathway that in the Drosophila central brain allows for cross talk between both neuroblasts
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Conclusions: 
1. Notch pathway is only active in proliferating neuroblasts.
2. Notch pathway is necessary for proper timing of neuroblast entry into quiescence.
3. Expression of Delta is downregulated in neuroblasts as they enter quiescence.
4. Notch pathway forms a feedback loop by inhibiting expression of Delta in neuroblasts.

and their daughters and between neuroblasts and their glial niche. To activate Notch signaling, Notch receptor binds to its ligand, 
Delta. Here we investigate how Notch pathway regulates neuroblast entry and exit from quiescence during the embryonic to larval 
transition. We found that Notch pathway is active in proliferating neuroblasts but not in quiescent neuroblasts. When Notch pathway 
was knocked down in neuroblasts, we found that neuroblast proliferation continued for longer compared to control during 
embryo-to-larval transition. Next, we assayed expression of Notch signaling components as neuroblasts entered into quiescence. 
We found that Delta expression and Notch pathway activity was downregulated as the neuroblasts entered quiescence. Additionally, 
we found that Notch pathway downregulates expression of Delta in neuroblasts and that ectopic expression of Delta is sufficient to 
delay neuroblast entry into quiescence most likely through cis-inhibition of Notch pathway. Altogether, this suggests that Notch 
pathway promotes neuroblast entry into quiescence by downregulating expression of Delta which in turn forms a self-regualtory 
feedback loop of Notch pathway.
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Figure 1: Proliferation of neuroblasts during
 development.
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right show the mushroom body (MB) NBs and the non-MB NB (marked by yellow box) 
from the same brain hemisphere at a higher magnification. In this and subsequent 
figures, neuroblasts are marked with Dpn (magenta). Scale bar-10μm. (J) Graph shows 
percentage of non-MB NBs expressing the Notch pathway reporter E(spl)mγ-GFP at the 
indicated time points. Data represents mean ± SEM. ***p≤0.001. 

 complete diet for 24hrs after larval hatching (24hrs 
ALH fed). (A-B) Notch intracellular domain 
antibody staining, (C-D) GFP antibody detecting 
Delta:GFP and (E-F) GFP antibody detecting 
E(spl)mγ-GFP, reporter for Notch signaling at the 
indicated developmental time points. Panels on the 

Figure 2: Notch pathway is 
active in proliferating but not 
quiescent neuroblasts.
A-I) Single plane images of a brain 
hemisphere from freshly hatched 
larvae (0hrs after larval hatching 
(ALH)) and larvae fed on a 
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Figure 3: Notch signaling regulates the timing of neuroblast entry into quiescence.
(A-F) Maximum intensity projections from single brain hemispheres show pcna:eGFP 
expression in (A-B) Control larvae, (C-D) Notch knockdown larvae and (E-F) Delta 
knockdown larvae at the indicated developmental time points. All transgenes are driven 
by Worniu-Gal4.  In this and subsequent figures, arrows indicate the ectopically 
proliferating NBs. (G) Graph shows number of non-MB NBs expressing pcna:eGFP at 
the indicated developmental time points. Numbers in each bar indicates the number of 
brain hemispheres analyzed. (H-M) Maximum intensity projections from single brain 
hemispheres show EdU incorporation in (I-J) Control larvae, (K-L) Notch knockdown 
larvae and (M-N) Delta knockdown larvae at the indicated developmental time points. (N) 
Graph representing the percentage of non-MB NBs incorporating EdU at the indicated 
developmental time points. (O) Scatter plot of the average cell size of the EdU 
incorporating neuroblasts at 2hrs ALH in Notch knockdown larvae. Data represents 
mean ± SEM.***p≤0.001, **p≤0.002,* p≤0.033. 
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Figure 4: Loss of Delta expression 
and Notch pathway activity is 
correlated with neuroblast entry into 
quiescence.
(A-B) Single plane images of a brain 
hemisphere from larvae expressing 
Delta:GFP at the indicated embryonic 
time points. Panels show  a non-MB NB 
(marked by yellow box) at a higher 
magnification. (E) Graph of percentage of 
non-MB NBs expressing Delta:GFP at the 
indicated time points.  (F) Graph 
representing the percentage of EdU 
incorporating non-MB NBs that are also 
expressing Delta:GFP at the indicated 
time points. (C-D) Single plane images 

of a brain hemisphere from larvae expressing E(spl)mγ-GFP at the indicated embryonic 
time points. Panels show higher show a non-MB NB (marked by yellow box) at a higher 
magnification. (G) Graph of percentage of non-MB NBs expressing E(spl)mγ-GFP at the 
indicated time points. Data represents mean ± SEM. ***p≤0.001. 

Figure 5: Notch pathway 
downregulates Delta expression in 
neuroblasts to drive neuroblast 
entry into quiescence
(A) Maximum intensity projections 
from single brain hemispheres show 
EdU incorporation in hs-Delta larvae. 
The animals were heat-shocked at 
stage 16 for 30mins. (B) Graph 
representing the number of non-MB 
NBs incorporating EdU (C-E)
Single plane images of a brain 
hemisphere from larvae expressing 
Delta:GFP at the indicated embryonic  

expressing Delta:GFP at stage 17 in control and Notch knockdown larvae. (G) Graph 
quantifying the fluroscence intensity of Delta:GFP in the ectopically proliferating 
neuroblast in Notch knockdown larve and its respective counterpart neuroblast in the 
control larvae. (H) Graph representing the percentage of ectopically proliferating non-MB 
NBs in Notch knockdown larvae that are also expressing Delta:GFP at the indicated time 
points.Data represents mean ± SEM. ***p≤0.001, **p≤0.002.  (I-J) Model and mechanism 
of how Notch pathway regulates the timing of neuroblast entry into quiescence.
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time points in (C, E) Notch knockdown  (D) 
control larvae. Panels show a non-MB NB 
(marked by yellow box) at a higher 
magnification. Asterisk (*) marks the MB NB. (F) 
Graph of percentage of non-MB NBs


