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Background:		
Histone	H2A	mono-ubiquitylation	is	a	post-translational	modification	associated	with	the	regulation	of	gene	expression	and	development.	
In	Drosophila	and	mammals,	canonical	and	variant/non-canonical	forms	of	Polycomb	Repressive	Complex	1	(PRC1)	mediate	histone	H2A	
mono-ubiquitylation	(H2AK119ub)	and	chromatin	compaction	[reviewed	in	1].	The	PRC1	complexes	are	believed	to	work	cooperatively	
with	PRC2-mediated	histone	H3	lysine	27	trimethylation	(H3K27me3)	to	repress	gene	expression.	However,	the	distribution	of	H2A	
ubiquitylation	across	the	genome	and	its	role	in	developmental	gene	regulation	are	not	fully	understood.	

2.	Questions	&	Approach	

Genome-wide	patterns	of	histone	H2A	monoubiquitylation	and		
effects	on	C.	elegans	developmental	timing	
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1.	Histone	modifications	by	Polycomb	Repressive	Complexes	

4.	Patterns	of	H3K27me3	at	H2AK119ub	peaks	in	mammalian	cells		3.	Comparison	of	H2AK119ub	and	H3K27me3	in	C.	elegans	embryos	

5.	Association	of	C.	elegans	H2AK119	mono-ubiquitylation	with	enhancer-like	domains		

6.	Developmental	phenotypes	in	H2AK119ub-deficient	animals											
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20	Chromatin	States:	Evans	et	al.	2016	[23]	

7	Chromatin	States:	Daugherty	et	al.	2017	[22]	
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A.	 	Heatmap	of	H2AK119ub	or	H3K27me3	ChIP-seq	over	all	C.	elegans	protein-coding	genes	
	and	flanking	regions.	Genes	were	ordered	using	kmeans	clustering	in	SeqPlots	[16].	

B.	 	H3K27me3,	but	not	H2AK19ub,	is	enriched	on	silenced	genes	and	depleted	on	highly		
	expressed	genes.	Q1-4,	quartiles	of	gene	expression	from	RNA-seq	data.		

C,	D.	Genes	with	H2AK119ub	or	H3K27me3	peaks	are	mostly	distinct	and	are	enriched	for	
	different	functional	categories.	

E.	 	Heatmap	of	enrichment	of	H2AK119ub	or	H3K27me3	the	top-25%	scoring	H2AK119ub	
	peaks	(rows)	in	the	indicated	human	and	mouse	cell	types	[11,20,21].	Coverage	is	centered	
	at	the	H2AK119ub	peak.	Additional	histone	mark	signals	used	for	clustering	are	not	shown.	
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Roles	in	C.	elegans	

Germline	development	[2]									
(maternal	effect	sterile)	
cell	fate	maintenance	[3]	

X	chromosome	silencing	[4]	

Neuronal	development	and	
migration,	axon	guidance	[7,8]	

Other	functions	?	

Germline		 Soma	

HOX	gene	silencing	[5]	
Onset	of	differentiation	in	

embryogenesis	[6]	

Unknown	?	

Rationale:		
The	roles	of	Polycomb	Repressive	Complexes	in	silencing	
developmental	regulators	in	pluripotent	cells	have	been	well-
established	[reviewed	in	9].	However,	PRC	complexes	may	function	
independently	in	other	contexts,	and	variant	PRC1	may	have	dynamic	
effects	on	gene	expression	[10,11].	The	phenotypes	of	PRC2	and	
potential	(v)PRC1	homologues	in	C.	elegans	suggest	that	these	
complexes	may	play	partially	distinct	roles.	

Questions:		
•  What	is	the	relationship	between	H2AK119	mono-ubiquitylation	

and	H3K27me3	in	C.	elegans?	
•  Is	H2AK119ub	associated	with	repressed	genes?	
•  Do	genomic	targets	of	H2AK119ub	show	functional	enrichment?		
•  What	are	the	characteristics	of	H2AK119ub-marked	genomic	loci?	

Approach:		
•  We	performed	ChIP-seq	in	C.	elegans	embryos	and	compared	

genomic	patterns	of	H2AK119ub	to	other	modifications	and	
chromatin	states	

•  We	investigated	phenotypes	of	H2A	ubiquitylation-deficient	
mutants	using	synchronized	development	assays	and	ChIP	

7.	MIG-32-dependent	H2AK119ub	is	consistent	with	ChIP-seq	patterns	

8.	Summary	 9.	References	

Conclusions:	
•  In	C.	elegans	embryos,	H2AK119ub	and	H3K27me3	are	not	generally	enriched	at	the	same	genomic	locations	
•  In	mammalian	cells,	there	may	be	a	trend	towards	more	co-enrichment	of	H2AK119ub	and	H3K27me3	in	

pluripotent	versus	differentiated	cell	types	
•  Histone	H2AK119ub	may	co-localize	with	enhancer-associated	chromatin	modifications.	Notably,	RING1B	also	

localizes	to	enhancers	in	cancer	cells	[20]	
•  Enrichment	of	H2AK119ub	at	genes	involved	in	neuronal	development	is	consistent	with	known	phenotypes	of	

mig-32	and	spat-3	mutants	[7,8]	
•  mig-32	and	spat-3	mutant	animals	are	deficient	in	H2AK119ub	[7,8	and	this	work]	and	show	developmental	

abnormalities		

Future	Directions:	
•  What	is	the	relationship	between	H2AK119ub	and	H2A	variants?	
•  What	is	the	functional	significance	of	H2AK119ub	localization	at	enhancer-like	loci	(e.g.	a	bivalent/poised	state)?	
•  Are	the	developmental	phenotypes	of	mig-32	and	spat-3	mutant	animals	dependent	on	H2AK119ub?	
•  Is	loss	of	mig-32/spat-3	sufficient	for	misregulation	of	the	H2AK119ub-marked	loci?	
•  How	does	loss	of	H2AK119ub	affect	H3K27me3	levels?	
•  Are	MIG-32	and	SPAT-3	part	of	canonical	or	variant	PRC1-like	complexes?	
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Some	strains	were	provided	by	the	CGC,	
which	is	funded	by	NIH	Office	of	Research	
Infrastructure	Programs	(P40	OD010440).	

A	 B	

C	

D	

E	

A. 	H2AK119ub	ChIP-seq	signal	was	averaged	over	chromatin	states	maps.	The	7	(upper)	or	20	(lower)	states	were	generated	using	hidden	
	Markov	Models,	based	in	the	indicated	studies	based	on	on	8	(upper;	[22])	or	17	(lower;	[23])	histone	or	histone	modification	ChIP-chip/
	seq	datasets	in	early	embryos.	

B.	 	Heatmaps	of	signal	enrichment	for	the	indicated	histone	modifications	at	the	top-25%	scoring	H2AK119ub	peaks	(rows).	The	H3K4me1	
	and	H3K27acetyl	data	were	from	the	modEncode	consortium	[24].	These	histone	modifications	are	often	enriched	at	enhancers	[25].	

C. 	UCSC	Genome	browser	[26]	screenshot	of	representative	region	of	H2AK119ub,	H3K4me1	and	H3K27ac	enrichment.	
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A	 B	 C	

A. 	Western	blots	of	bulk	H2AK119	ubiquitylation	levels	in	wild-type	(N2)	and	strains	with	deletions	
	in	mig-32	or	spat-3,	putative	homologues	of	PRC1	components	PCGF/Bmi1	and	RING1,	respectively	
	[7,8].		

B. 	Quantification	of	animal	stage	during	synchronous	development.	Animals	(380-794	per	genotype)	
	were	scored	45	hours	after	release	from	L1	diapause.	The	spat-3(mgw14)	allele	is	a	point	mutation	
	[8]	

C.	 	UCSC	genome	browser	[26]	tracks	of	ChIP-seq	coverage	for	two	representative	loci	in	wild-type	
	embryos.	Positions	of	MACS2-predicted	peaks	are	shown	below	the	coverage	tracks	and	coloured	
	by	score	(darker,	higher	confidence).	Positions	of	PCR	amplicons	for	ChIP-qPCR	are	indicated.	

Methods.	ChIP-seq	reads	were	aligned	using	Bowtie2	[12]	and	filtered	using	Samtools	[13].	Coverage	of	
genomic	elements	was	calculated	using	BEDtools	[14]	or	deepTools	[15].	Heatmaps	were	plotted	using	SeqPlots	
[16].	Peaks	were	called	with	MACS2	[17]	and	annotated	using	ChIPSeeker	[18]	and	clusterProfiler	[19].	

Human	iPSCs	
Chan	et	al.	2018	[20]	

Breast	Cancer	Cell	Line	T47D	
Chan	et	al.	2018	[20]	

Mouse	epidermal	progenitor	
Cohen	et	al.	2018	[11]	

Leukemia	Cell	Line	K562	
van	den	Boom	et	al.	2016	[21]	

H3K27me3	H2AK119ub	 H3K27me3	H2AK119ub	 H3K27me3	H2AK119ub	 H3K27me3	H2AK119ub	ChIP-seq:	

Cell	type:	

LEFT	

RIGHT	

10.	Acknowledgements	

Amplicon	 Amplicon	

D	

D. 	Directed	ChIP-qPCR	assays	in	wild-type	and	mig-32(n4275)	mutant	embryos	for	amplicaons	
	indicated	in	panel	A.	Control	amplicons	are	regions	of	low	enrichment	in	the	ChIP-seq.	

Male	tail	morphogenesis	[5,7]	
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