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Lindnera mrakii (syn. Williopsis saturnus var. mrakii or Hansenula mrakii) produces a proteinous Killer toxin called HM-1 which Kills sensitive yeasts including Saccharomyces cerevisiae. HKR1 (Hansenula mrakii Killer toxin-resistant gene 1)
was originally isolated from the genome of S. cerevisiae as a gene whose overexpression overcame the cytocidal effect of HM-1. The gene product Hkr1 is a large, highly glycosylated mucin-like type I transmembrane protein containing an N-
terminal signal peptide sequence, Ser/Thr-rich repetitive sequences and a putative transmembrane domain. Calcium binding EF hand and leucine zipper motives were found in its cytoplasmic tail. It also functions as an osmosensor in the
high osmolarity glycerol (HOG) MAP kinase pathway. We previously reported that only the partial sequence of Hkrl endowed HM-1 resistance to the cells, then first in this study, the minimum sequence of Hkrl required for HM-1 resistance
was determined by serial deletions. Apparently the extracellular HMH (Hkr1-Msb2 Homology) domain in addition to the cytoplasmic tail was indispensable for HM-1 resistance. Also we observed that the cells overexpressing
partial HKR1I showed altered budding patterns. The haploid S. cerevisiae cells mainly select bud sites in an axial pattern, but bipolar and randomized patterns were often observed in the presence of HM-1. The mutant cells lacking the
cytoplasmic part of Hkrl showed an aberrant budding pattern, too. It is well studied that a series of BUD gene products, Bud1/Rsr1l, Bud2, Bud5 and so forth are required for proper bud-site selection in S. cerevisiae. Since both
overexpression and disruption of HKRI1 gave rise to abnormal budding patterns, Hkr1l might regulate budding coordinately with those proteins, or possibly interacting with some other factors. Moreover, we found that the budding pattern of
haploid S. cerevisiae cells grown under the influence of HM-1 was also affected, suggesting that HM-1 perturbed the bud-site selection process. HM-1 has been studied as a cell wall integrity disruptor and believed to inhibit the synthesis of
cell wall polysaccharides, but we now postulate that it may target other cellular events such as bud site selection and cell polarity regulation. Our observations could provide important pieces of information to understand the mechanism of the
cytotoxicity of HM-1 and the function of Hkr1, especially its cytoplasmic domain in bud site selection as well as cell wall integrity of S. cerevisiae.
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Fig. 5a Each part of HKRI (A, B, C or D) was subcloned into the plasmid vector pPEHKRC-ADHI1 and introduced to S. cerevisiae A451. The insert A contains the C-terminus
(HindIII™) of HKRI and the ATG (for Met!!37) could be utilized as a translational initiation codon. The insert B contains the region corresponding to Gly!'!?? to the C-terminus of Hkrl
and is unable to use the ATG for Met!!137, but another ATG for Met!3%® could be used for translational initiation. The clones C and D lack the HMH domain. The clone C contains the
sequence for the transmemrane domain, while the clone D does not.

Fig. 6 1) Hkrl is a membrane-bound signaling mucin
that acts as an osmosensor in the HOG MAP kinase
signaling. Major components and interactions among
them are depicted.
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While Hkr1 has been well studied as a component of HOG MAP kinase signaling, it is not clear for now that Hkr1 functions as a member of bud site selection machinery.
Are those two different signaling pathways associated? Does Hkr1 link them? Does HM-1 perturb the signaling? We are currently working on these questions.



