The mutation rate itself may change the order of adaptive mutations Alexandre de Aquino Soares¹, Lucas Wardil¹, Ronald Dickman¹ and Louis Bernard Klaczko² ¹Universidade Federal de Minas Gerais, ²Universidade Estadual de Campinas

Introduction

Yampolsky and Stoltzfus [1] presented evidence that a mutation bias, when opposite to a fitness bias, changes the probabilities of fixation of the alternative alleles depending on the overall mutability *m*. Our objective is to understand this effect, and from it to understand how different paths to a common final genotype may be biased with *m*, if so.

Single step

Model

Dynamics

Conclusions

- Mutability may radically change the odds of fixation
- The turning point is sensitive to the organism;
- It may be not too sensitive to the selective pressure;
- At very low *m*:

• Clonal interference is very rare;

• High mutation rate is favored;

• Who "tries" to fix more often, wins.

• At very high *m*:

• Clonal interference is the rule;

• High fitness is favored;

• Who competes better, wins.

• The most fit allele fixes faster;

• Dynamics is the most variable for intermediate *m*.

Multiple steps

Model

Final state

Effect

Predictability

Summary

• Mutability again changes the odds of fixation

• Paths with decreasing rates are favored for low *m*;

Reference

1. Yampolsky, L.; Stoltzfus, A. EVOLUTION & DEVELOPMENT 2001, 3, 73 – 83.