Identification and Characterization of X-linked Hybrid Male Sterility Factors between Drosophila simulans and D. mauritiana

Rodolfo A. Villegas, Neal Weldon, Gina Mavhezha and Colin D. Meiklejohn
School of Biological Sciences, University of Nebraska-Lincoln

INTRODUCTION

New species are formed through the evolution of reproductive barriers that decrease gene flow between populations. One of inviable hybrid offspring due to genetic incompatibilities (1).

Figure 1: Dobzhansky-Muller Genetic Incompatibilities Model Genetic incompatibilities preferentially accumulate on sex chromosomes; as a consequence, when hybridization results in the sterility or inviability of one sex, it is the heterogametic sex (Haldane's Rule) (2).
My research aims to identify and describe X-linked factors that drive hybrid male sterility (HMS) in Drosophila to begin to resolve the genetic basis of Haldane's Rule.

BACKGROUND

My research is focused on identifying hybrid male sterility
factors within a 4 Mb region named 2P6. this region harbors a factors within a 4Mb region named 2P6. this region harbors
previously identified HMS factor named Odysseus (OdsH) (3).

 2P-re : Pat map of Drosophia simumano X ciromosome. שac sterility in an otherwise D. simulans genetic background

OdsH is a heterochromatin-binding protein, but the mechanism of HMS is unknown. Protein localization experiments have implicated an interaction with the D. simulans Y chromosome as the mechanism of sterility (4).

METHODS

- The high resolution genetic map of HMS in 2P6 was produced using visible markers to complete the crossing scheme below:

Figure 4: Crossing scheme for results of Figure 5A \& 5B - All fertility tests are conducted in replicates of at least ten using a single focal male and three D. simulans (w XD1) virgin females.

- Spermatid nuclei were visualized in testes dissections using a rotamineB-GFP transgene. All testes were dissected from ~ days.

EXPERIMENT 1: RECOMBINATION-BASED MAPPING OF HMS FACTORS

EXPERIMENT 2: D. MAURITIANA Y CHROMOSOME RESCUES FERTILITY OF ODSH-MEDIATED STERILITY

Figure 6: The D. mauritiana Y chromosome was introgressed into a short OdsHcontaining sterile recombinant (B-013) and fertility was assayed. Our D. simulans control is labeled wXD1 while Ymau is the D. mauritiana Y chromosome in an otherwise D. simulans background. The introduction of the D. mauritiana Y chromosome rescue fertility of B-013 males, but does not reach levels of fertility of either of our controls.

CONCLUSIONS

We demonstrate evidence of at least 4 hybrid male sterility regions within this 4 Mb region, including a previously identified HMS factor, OdsH (3).
The D. mauritiana Y chromosome rescues fertility of an OdsHcontaining recombinant chromosome reinforcing the hypothesis that OdsH is interacting with a D. simulans Y-linked loci to cause sterility.
As the amount of D. mauritiana introgression increases the developmental defects occur earlier in spermatogenesis with B-013 (OdsH-containing sterile recombinant) producing individual mature sperm while 2P6b fails to individualize and even reshape spermatid nuclei.

EXPERIMENT 3: EARLIER DEVELOPMENTAL DEFECTS WITH INCREASING AMOUNTS OF D. MAURITIANA INTROGRESSIONS

Figure 7: In 2P6b testes, sperm bundles are disorganized, and Figure 7: In 2P6b testes, sperm bundles are disorganized, and
sperm bundles fail to remodel; instead round ProtB-GFPpositive nuclei appear to remain clustered in cysts throughout much of the testis(5). B-016 appears to have a very similar phenotype while A-001 appears to undergo some reshaping of spermatid nuclei but failure to individualize. B-013 testes appear to make mature and elongated sperm, but are found throughout the testis instead of sequestered in the seminal vesicles.

2P6b \square
B-016
A-001
B-013

