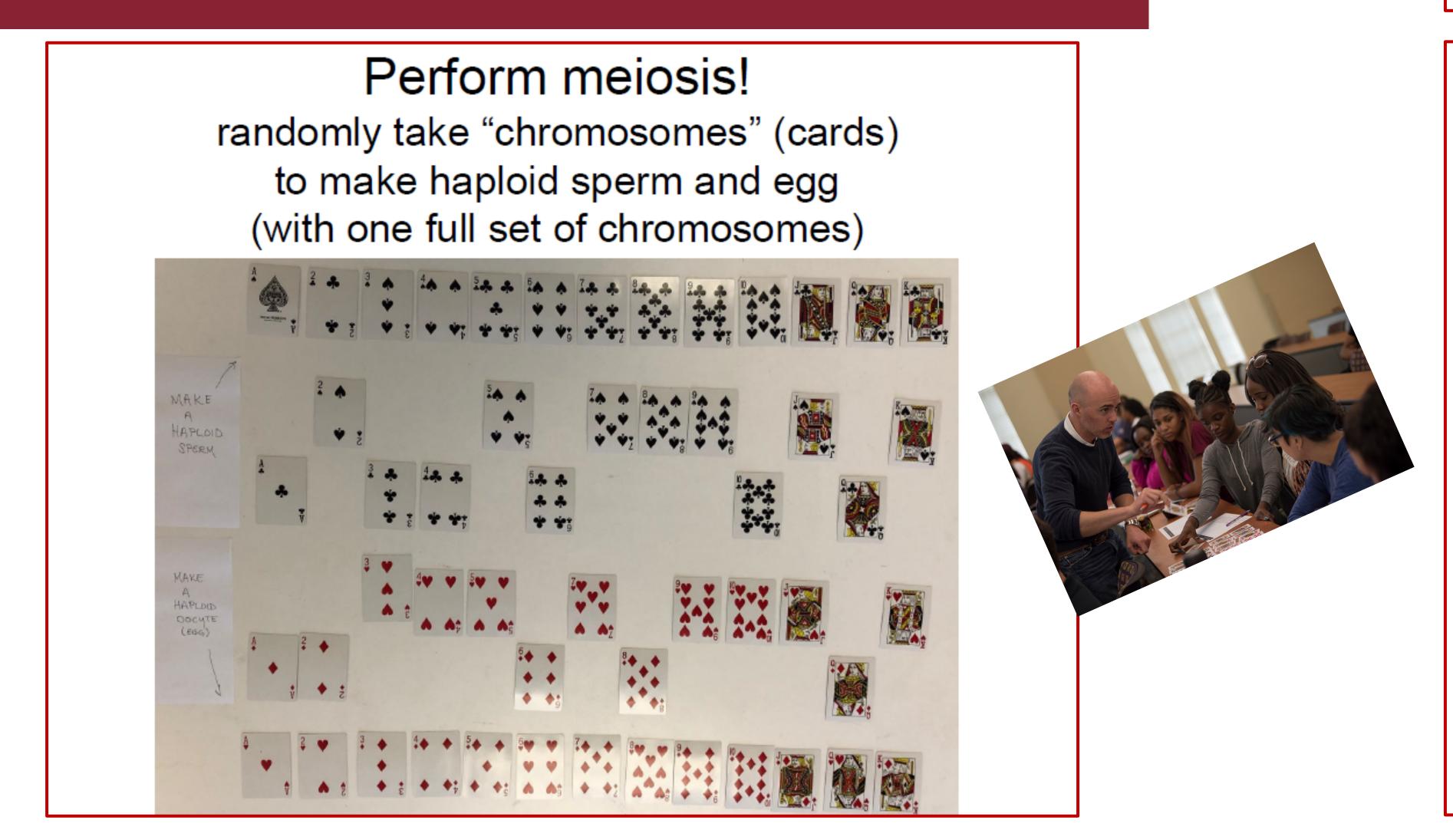
TEXAS WOMAN'S $\mathbf{U} \mathbf{N} \mathbf{I} \mathbf{V} \mathbf{E} \mathbf{R} \mathbf{S} \mathbf{I} \mathbf{T} \mathbf{Y}^{\mathsf{TM}}$

Learning genetics by doing: "making a baby" with playing cards **Tina L. Gumienny and Lionel Faure** Texas Woman's University, Department of Biology, Denton, Texas

Abstract

Genetics can be a difficult topic to master, especially for non-majors students. For some students, the random yet precise segregation of chromosomes during meiosis and what the different inheritance patterns mean are especially hard to grasp. To help students understand these basic genetic concepts, we developed an in-class activity to connect genetics concepts with students' lived experiences. Using a deck of playing cards with the cards representing chromosomes, teams of students practice applying inheritance patterns learned in class to "make a baby". The students are given background: each card represents a chromosome. The two black suits are the dad's chromosomes. The two red suits are the mom's chromosomes. Students are instructed to perform meiosis: after laying out cards in order by suit, one student in the group makes the "sperm" chromosome set by selecting one card each of clubs or spades, randomly mixing clubs and spades. In a similar way, another student makes the "oocyte" chromosome set from heart and diamond cards. The group performs "fertilization" by lining up the two sets of cards, the "sperm" ace with the "oocyte" ace, etc. They confirm no aneuploidies (they need 2 aces- one black, one red. 2 two's, etc.). After students have successfully "made a baby", the instructor makes available a table with the genotypes associated with each chromosome and the inheritance pattern. Real human traits that generally follow autosomal recessive (straight hair line), dominant (widow's peak, Huntington disease), sexlinked (gender), incomplete (cancer susceptibility), and polygenic (eye color) inheritance patterns are provided for the students to work through. The students' goal is, as a group, to interpret the genotype and phenotypes of their "baby" based on the randomly selected card chromosomes their "baby" has. They fill in a paragraph describing their baby's traits based on the genotype and the given inheritance patterns, and each student provides an individual analysis/defense of their conclusions. This activity has been refined over four semesters with two different instructors. A high percent of students provided positive responses when asked if this activity helped them understand the patterns of inheritance and if this activity was enjoyable.

This activity is adaptable to one's favorite inheritance patterns, traits, and diploid, sexually reproducing, multi-chromosomal organism. Practically, it is fairly inexpensive, doable in 50 minutes, scaleable to fairly large classes (with help from teaching assistant(s)), provides an opportunity to assess core objectives of teamwork and critical thinking, and is a mostly enjoyable learning process for both students and instructor.

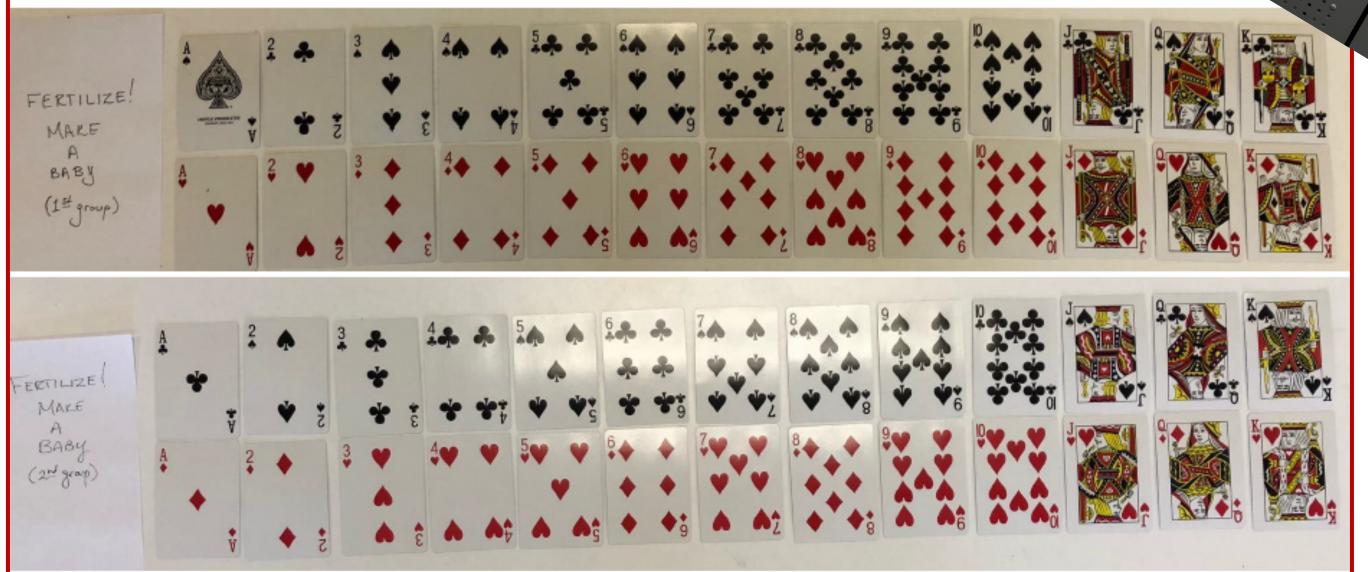

Make mom and dad's karyotype

- 1. Please pick up a worksheet and sign a photo release form.
- 2. Make a group of 2 or 3 people.
- 3. If it hasn't been done already, please order the stack of cards nearest you in 4 rows: spades, clubs, hearts, and diamonds, from ace to king. This one deck of cards will be used by two groups.

Decide who gets to make the "sperm" and

who gets to make the "egg".

Create sperm and egg



Fertilize to make a baby

Fertilize!

Put the sperm and egg together to make a diploid "baby"! Match their chromosome pairs to confirm your baby will survive and to see what traits your baby has.

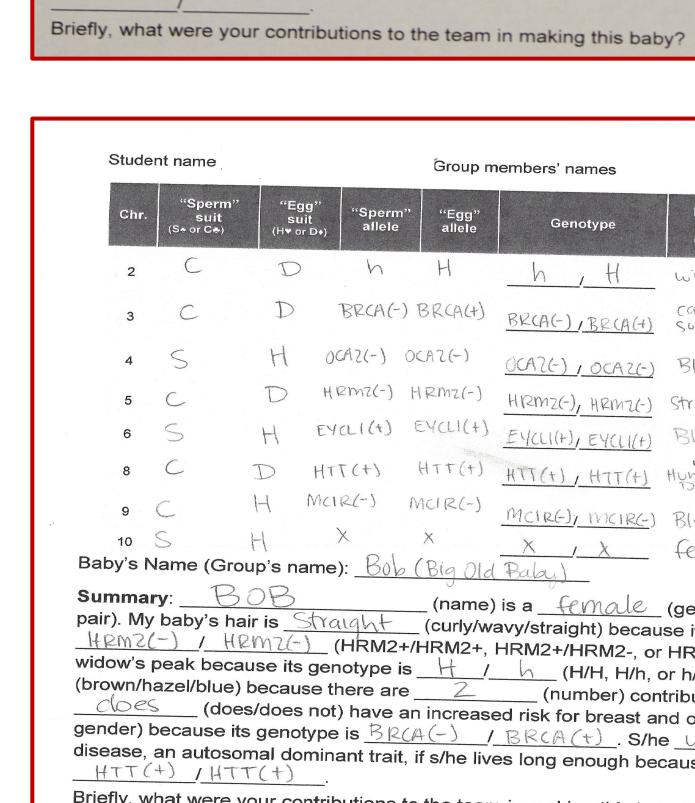
Here's an example of two groups' "babies" from one deck (siblings).

Determine your baby's genotype and phenotype

Discover what traits your baby has by figuring out its genotype

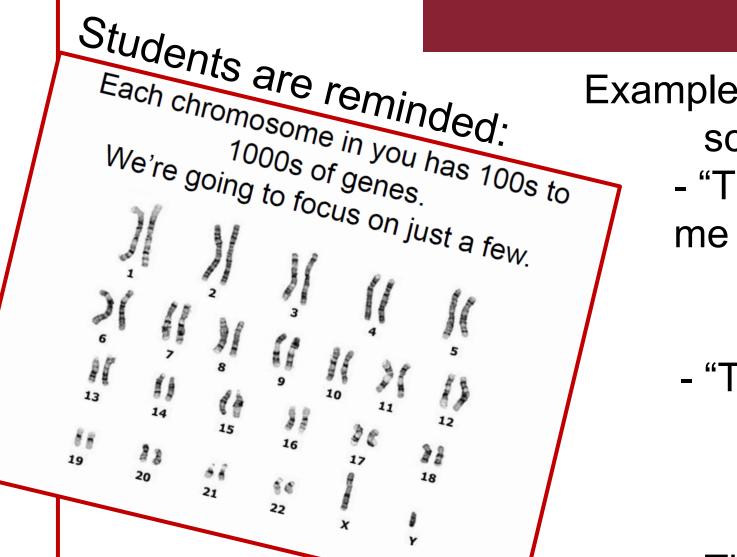
Please take a copy of this chart for your group, if needed. At the end of class, some groups can read the paragraph they wrote about their baby and we can see how the parents' traits segregated in their offspring! Paternal (dad'a) Maternal (mom'a)

						Paternal (dad's) genotype (spade + club)		Maternal (mom's) genotype (heart + diamond)		
Chromosome	Character	trait	gene	Trait allele	Inheritance	Spade	Club	Heart	Diamond	Notes
2	Hair line shape	Widow's peak	н	H is dominant for the widow's peak h is recessive (straight hair line)	autosomal dominant (peak) autosomal recessive (straight)	н	h	h	н	
3	Cancer susceptibility	Early onset breast and ovarian cancer susceptibility	BRCA1	BRCA1(-)	incomplete	BRCA1(+)	BRCA1(-)	BRCA1(+)	BRCA1(+)	55 to 65 percent of women who inherit a harmful <i>BRCA1</i> mutation will develop breast cancer by age 70 years.
4	Eye color	Brown eye	OCA2	OCA2(-) is non- contributing	polygenic	OCA2(-)	OCA2(+)	OCA2 (-)	OCA2(-)	5-6 + alleles = brown 3-4 + alleles = hazel 0-2 + alleles = blue
5	Hair type	Curly hair	HRM2	HRM2+	incomplete	HRM2+	HRM2-	HRM2+	HRM2-	+/+ = curly +/- = wavy -/- = straight
6	Eye color	Brown eye	EYCL1	EYCL1(-) is non-contributing	polygenic	EYCL1(+)	EYCL1(-)	EYCL1(+)	EYCL1(+)	
8	Huntington disease	Huntington disease	HTT	HTT(-)	autosomal dominant	H∏(+)	HTT(+)	НТТ (-)	HTT(+)	This trait appears (usually) later in life
9	Eye color	Brown eye	MC1R	MC1R(-) is non- contributing	polygenic	MC1R(+)	MC1R(-)	MC1R(-)	MC1R(+)	
10	gender				Sex-linked	×	Y	×	×	sex chromosomes determine male/female


Discover what traits your baby has by figuring out its genotype Work as a group. Each student turns in their own worksheet at the end of class. We'll do the first one together.

Stu	Student name:					Group member name(s):			
	Chr.	"Sperm" sull (SearCa)	"Egg" sult prorbs)	"Soerm" allele	"Eoo" aliele	Genotype			
	1 (800)					/			
	2					/			
	4					/			
	5					/			
	8					/			
	8					/			
	9					/			
	10					1			
Ba	by's N	ame (Gro	up's name	e):					
Summary: pair). My baby's hair is				_ (name	(name) is a				
pa	ir). My	baby's ha	ir is	(1) (2) (2)	_ (curly/v	vavy/straight) becau			
						HRM2+/HRM2-, or			
widow's peak because its genotype is (H/H, H/h, o (brown/hazei/blue) because there are (number) cont									
(does/does not) have an increased risk for breast an									
gender) because its genotype is/ S/he									
disease, an autosomal dominant trait, if sihe lives long enough bed									
Briefly, what were your contributions to the team in making this bat									

(gender) because s/he has _____ (sex chromosome use its relevant genotype is HRM2-/HRM2-). My baby _____ (has/has n or h/h). My baby's eye color is _ tributing eye color alleles in its genome. My baby nd other cancers relative to other (plura (will/ will not) develop Huntington cause the genotype at the HTT locus is


nr. <mark>"Sperm" "Egg"</mark> suit suit (S≑ or C♠) (H♥ or D+)

325 D

4 S H

aby's Name (Group's name)

pair). My baby's hair is

- The most common free-response answer to the question, "What have been the best aspects of this course's lecture portion?", mentioned the interactive, hands-on activities, which included this activity.

As a condition for belonging to the core curriculum, all public university core courses are required by Texas to participate in core assessment. This activity can be used to assess the following objectives for a non-majors biology course: critical thinking skills

empirical and quantitative skills, and teamwork.

• Use an online learning management system form for submission. • reduces the possibility of loss of student assessments facilitates grade entry • Use multiple choice for most entries (this will prevent common mistakes).

Examples of a common mistake and a correctly completed sheet

_ Group member name(s):						
perm" Illele	"Egg" allele	Genotype	Phenotype- group consensus			
H	h	h				
ł	H	<u>++ , ++</u>				
- 1	1	<u>H</u> ,h				
+	H	<u>h , tt</u>				
h		<u>-t</u> , h				
h		<u>+ , h</u>				
H		<u>+ , +</u> <u>+ , +</u>				

al dominant trait, if s/he lives long enough because the genotype at the HTT locus in

	Group m	embers' names		
"Sperm" allele	"Egg" allele	Genotype	Phenotype- group consensus	Do you agre with the consensus
h	Н	h , H	widow's peak	yes
R(A(-)	BRCA(+)	BR(A(-), BR(A(+)	cancer Susceptibility	yes
2(-) 0	(AZ(-)	OCARE), OCARE)	Blue eyes	yes
mz(-)	$-Rm_2(-)$	HRMZ(-), HRMZ(-)	straight hair	yes
_1(+)	EYCLI(+)	EYCLI(+), EYCLI(+)	Blue eyes	yes
(+)	HTT(+)	HTT(+), HTT(+)	Huntington Disease	yes

the offspring is cancer

results in a female (gender) because s/he has XX (sex chromosom)

ender) because its genotype is BR(A(-) / BR(A(+) . S/he will not (will/ will not) develop Huntington disease, an autosomal dominant trait, if s/he lives long enough because the genotype at the HTT locus is

Briefly, what were your contributions to the team in making this baby? I was there when the baby was born !!

Assessment

Example of feedback in one course, assessed in class using a Likert-type scale and free response (n=50):

- "The 'making a baby with cards' inheritance patterns activity helped understand the patterns of inheritance."

- 84% agreed or strongly agreed
- 2% disagreed or strongly disagreed

- "The "making a baby with cards" inheritance patterns activity was enjoyable."

- 82% agreed or strongly agreed
- 2% disagreed or strongly disagreed

This activity can be used for core assessment

Future