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Absence of genotype data 
Contrasting with genetic population structure
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I use uppercase bold symbols for matrices and lower case bold symbols for
row vectors. I index the rows of matrices first. 0m,n stands for an m × n
matrix of zeros, 1m is an m× 1 column matrix of ones, and Im is an m×m
identity matrix. Nm,n (·; ·; ·) denotes a matrix Gaussian distribution, with
the among-row covariance matrix listed first. Nn (·; ·) is a multivariate
Gaussian. Notation of the form aj· stands for the j-th row vector of the
matrix A.

Y is the N × d matrix of data. A is the matrix of individual (line, or
accession) means, with the N ×NA design matrix Z. B contains regression
coefficients on covariate predictors X (analogous to fixed effects in mixed
models). E is the N × d matrix or errors. µ0 is a 1× d row vector of overall
means. Σx are d× d covariance matrices among d traits.

Population assignments are inferred using a multiplicative mixture model.
Indicator variables zjm take the value 1 if the j-th individual belongs to pop-
ulation p and 0 otherwise. Typical multiplicative mixture models allow an
individual to belong to more than one group. I maintain the constraints
present in typical additive mixture models, so that only one zjm can be
1. The hyper-prior on the population probability πp is the Dirichlet distri-
bution usually found in additive mixture models. To enable Hamiltonian
Monte Carlo updates, I marginalize out zjm, replacing them with the prob-
abilities of belonging to a population pjm. To keep pjm in the (0, 1) interval
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Implementation
Hamiltonian Monte Carlo (NUTS) 
R package: MuGaMix  
   github.com/tonymugen/MuGaMix
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Hamiltonian Monte Carlo:
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Challenge: 
Population label switching

Population mean 
MCMC chains

Dramatic improvement in 
convergence and mixing

True population ID

Simulated data results Solutions
1. Sort populations using PC1(unstable)
2. Use concerted switching of 
population IDs in the Markov chain:

3. Left-ordered matrices (to be implemeted)


