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Abstract Introduction

In Drosophila, the zygotic genome activation (ZGA) protein Zelda A
(ZLD) is known to function as a pioneer transcription factor (TF) to activate
early transcription. However, many genomic loci remain active in the absence
of ZLD. Therefore, we hypothesized that other TFs that have not yet been
identified also regulate early transcription. Chromatin-linked adaptor for Male- ] C '|'
specific lethal (MSL) proteins (CLAMP) regulates dosage compensation in J T IVViC IX
males but is also required for embryos to progress through ZGA. However, o
the functional relationship between CLAMP and Zelda, two key early TFs, /
has not been investigated.

Here, we depleted maternally deposited ZLD or CLAMP and used (Liang et al., 2008) (Soruco et al., 2013)
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ChlIP-seq to define their relationship before (0-2hr) and after ZGA (2-4hr) in aternal mRNA Jygotic mRNA
early Drosophila embryos. We found synergistic binding between CLAMP -
and ZLD at promoters during ZGA. In contrast, CLAMP and ZLD bind C I —
independently at intronic binding sites. Depletion of maternally deposited
CLAMP reduces ZLD binding both before and after MZT. However, depletion " - - -
of maternally-deposited ZLD only influences CLAMP binding before MZT. nuclear cycle | ’ e 1a ’
These observations suggest that ZLD is required more prior to MZT, while (minor ZGA) ("wl“f ZGA)
CLAMP is required both prior and post-ZGA to modulate ZLD occupancy. (b) W &r
Moreover, ZLD and CLAMP regulate the transcription level of genes at S o 2206 W)W
dependent binding sites thr_ough clusters of motifs. Ta.ke.n together, our (Hamm et al. 2018) o o
results reveal a novel function of CLAMP as a transcription regulator at
promoters to activate transcription during ZGA. Figure 1. Pioneer factors drive genomic activation in early embryos
A. Zelda (ZLD) is expressed in early embryos to regulate transcription during ZGA.
KEYWORDS WORDS Maternal to zygotic transition, zygotic genome B. Dosage compensation regulator CLAMP binds to GA-rich motifs.
activation, CLAMP, Zelda, Drosophila embryo C. Genomic loci that remain active in the absence of ZLD are enriched with (GA)s.
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* A maternal triple driver (MTD-GAL4) line was crossed with a Transgenic RNAI Flgure 2. CLAMP and z|_[) exhibit synergistic blndlng to promoters during
Project (TRiP) Clamp RNAi line or a TRiP Zld RNAi line. The MTD-GAL4 line MZT.
alone was used.as the control line in our study. | A. Depletion of CLAMP reduces ZLD binding both before and after MZT.
* ChlIP-seq experiments were performed to measure CLAMP and ZLD protein However, depletion of ZLD only influences CLAMP binding before MZT.
binding pre-MZT (0-2hr) and post-MZT (2-4hrs). B. CLAMP and ZLD peaks showed a significant overlap (p < 0.01) at both time
« Maternal CLAMP or ZLD was depleted by RNA interference (RNAI) to points.
determine the functional interaction between these two essential TFs. C. CLAMP and ZLD facilitates binding to promoters but not introns.
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Model and Conclusion
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A-B. The numberhof blln((jilng rr:jotlfs fer thfe re)qurl]rercli:proteln IS much higher at the Model and Conclusions
dependent sites than independent sites for both TFs. « CLAMP and ZLD bind synergistically to promoters during ZGA.
C.ZLD regUIateS CLAMP blndlng from a short distance and CLAMP regUIateS e In ContraSt, CLAMP and ZLD bind independently at intronic blndlng sites.
gl‘g ?[%ughdbgtﬂaljﬂnlg and Isr:ortthra?ge mter?ctlolns. ' of d dent « Clusters of ZLD and CLAMP binding sites regulate the transcription level of
.- - 4 an -A reguiate the transcripton ievel or genes at aepenaen genes at dependent sites.
sites in a synergistic manner.
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