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There has been a recent explosion in the application of 
supervised machine learning methods within the fields of 
population genetics, genomics, and phylogenetics. These 
tools come with a unique set of constraints and potential 
hazards. Perhaps the most obvious of these limitations are 
the problems of overfitting and out-of-sample prediction, 
where the training set is a poor match to the test data. Here 
we explore training with the inclusion of adversarial

Introduction

examples—inputs crafted by making 
the smallest perturbation that results 
in a high-confidence misclassification 
of the example (right)—as a method 
to assess and potentially increase 
robustness to common model 
misspecifications.

Accuracy is significantly lower
for out-of-sample prediction
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Effects of adversarial training for out-of-sample prediction
are robust to attack type and network architecture
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Out-of-sample raw performance
with adversarial training

Effect of adversarial training
relative to non-adversarial training
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Adversarial attack comparison Neural network comparison

No effect of adversarial training 
for in-sample prediction
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Effects of adversarial training 
for out-of-sample prediction 

differ between tasks
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We trained neural networks (GRUs and CNNs) for each of 
three classification tasks. We used the raw genotype matrix as 
input for classifying population expansions and admixture, and 
for selective sweeps we used a matrix of population genetic 
summary statistics. We then generated adversarial examples 
for each input (right). A second network was later trained on a 
mixture of clean and adversarial examples. Prediction accuracy 
was compared for examples matching the training set 
(in-sample) and for misspecified examples (out-out-sample).
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