

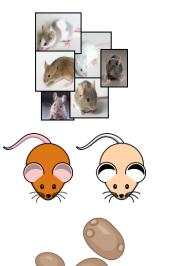
Identifying Genetic Loci Whose Effect on Phenotype are Influenced by **Changes in Genetic Background**

Christoph D. Rau¹, Natalia M. Gonzales², Joshua S. Bloom¹, Julien Ayroles³, Danny Park⁴, Abraham A. Palmer², Aldons J. Lusis¹ and Noah Zaitlen¹

1: UC Los Angeles 2: UC San Diego 3: Princeton 4: UC San Francisco

Motivation

Quantitative genetic models of phenotype used to map complex traits frequently assume that allelic effect sizes are fixed in a given population and do not vary from individual to individual. Numerous examples exist, however, of epistatic interactions in which two or more alleles interact in a non-additive fashion to affect phenotypic variation. These interactions suggest that the effects of genetic and environmental perturbations may vary across a population.


To-date, most available methods to detect epistatic interactions focus on detecting pair-wise interactions between individual polymorphisms. By contrast, we have developed a statistical test which we call Gene By Ancestry $(Gx\Theta)$ that determines whether the effect of a polymorphism on a complex phenotype changes as a function of a definable ancestral background such as one found in a model organism or an admixed human population.

Populations

122 Recombinant Inbred Strains Of the Hybrid Mouse Diversity Panel

1063 mice from an AIL between LG/J and SM/J

15 yeast crosses each with between

Model

The standard model to determine the effect of a set of SNPs on a phenotype can written as

$$y_k = \mu + \sum_{i=1}^M \beta_i X_i + \varepsilon_k$$

Where y_k is the phenotype of individual k, μ is the mean phenotypic value, M is the number of markers, β are the weights on the SNPs, X is the *m* by *n* array of SNP genotypes and ε is the combined error term. The effect of an individual SNP i on a phenotype can then be written as

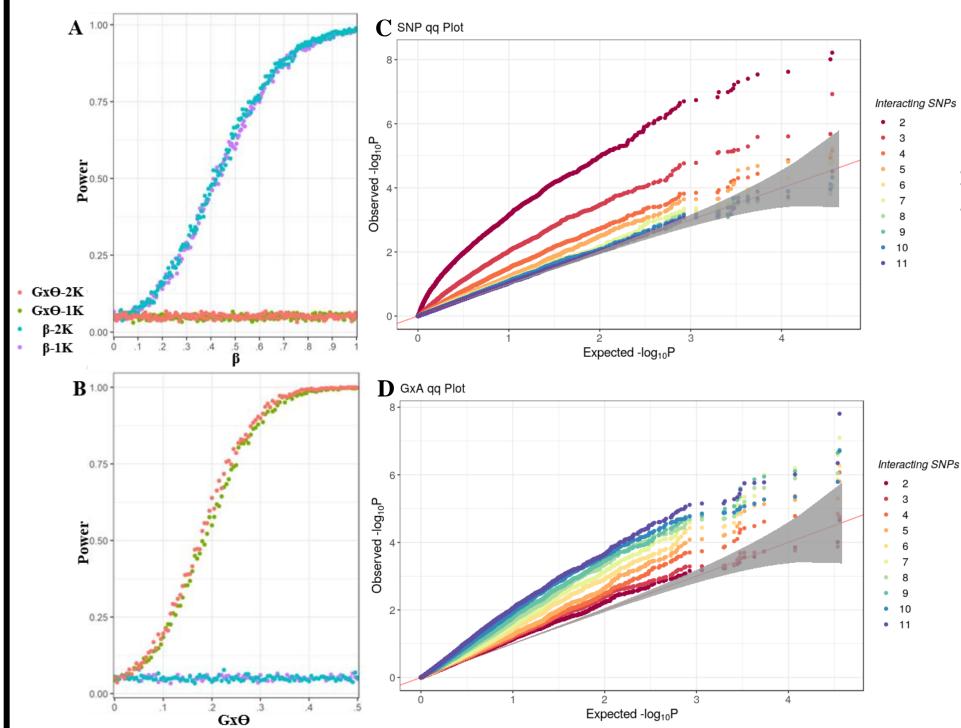
$$\mathbf{y} = \boldsymbol{\mu} + \beta_i \mathbf{X}_i + \mathbf{u} + \mathbf{e}$$

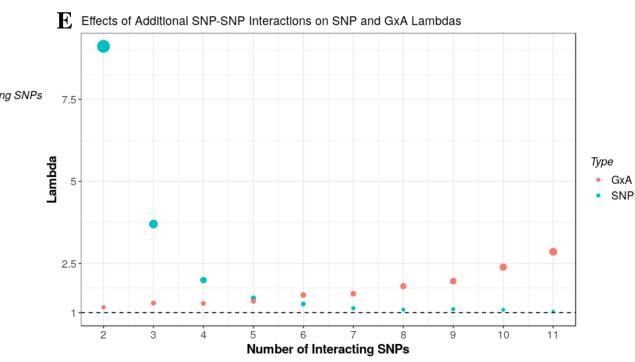
Where y is the vector of all phenotypes and The random effect u accounts for relatedness of individuals based on SNPs.

Motivated by the above, we add an Ancestry term (Θ) , defined in our model as the percentage of a definable ancestral population (eg a known mouse strain) identified within each individual, as well as an interaction term between Θ and genetics X.

$$y_k = \mu + \sum_{i=1}^M \beta_i X_i + \delta \theta_K + \sum_{i=1}^M \varphi_i \theta_i X_{ik} + \varepsilon_k$$

Where δ is the global weight of the ancestry effect, Θ are the ancestries for all N individuals and ϕ are the weights of the Gx Θ effect. We want to identify SNPs where $\varphi_i \neq 0$ as these are sites where Ancestry is interacting with our genotypes. Motivated by our model above, we can write a new model for the effect of a single SNP i on a phenotypic trait as:


 $\mathbf{y} = \boldsymbol{\mu} + \beta_i \mathbf{X}_i + \delta \boldsymbol{\theta} + \varphi_i \boldsymbol{\theta} * \mathbf{X}_i + \mathbf{u} + \mathbf{e}$ Here, Θ is the column vector of ancestries, and $\Theta * X$ is the elementwise product. Our Gx Θ test is then a LRT test with a null of $\varphi_i = 0$


650 - 950 progeny per cross

and an alternate of $\varphi_i \neq 0$.

Simulation

(A+B) Power calculations based on simulated data with variable main SNP effects β_G (**A**) or variable Ancestry-SNP effects $\beta_{Gx\Theta}$ (**B**). Blue and Purple are power curves for detecting a significant SNP effect, while Orange and Green are power curves for detecting a significant GxO effect. Two phenotypic models, one incorporating 1 GRM (1K) correcting for relatedness in the SNPs (green, purple) and one incorporating 2 GRMs (2K) correcting for relatedness in both SNPs and Ancestry (red, blue) were used.

(C+D) Effect of increasing numbers of epistatically interacting SNPs on the algorithms ability to detect a significant main SNP effect (C) or $Gx\Theta$ effect (**D**).

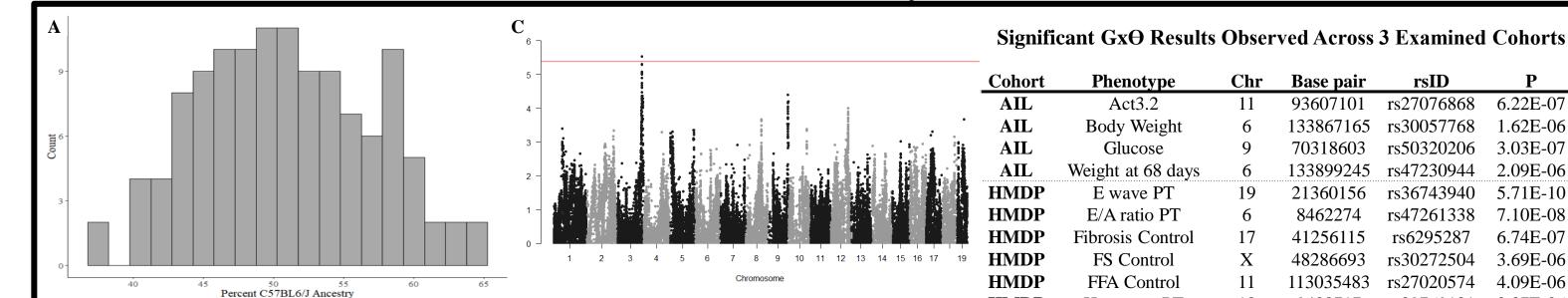
(E) Genomic Inflation Constants (Lambda) for (C) and (D) show that $Gx\Theta$ performs better than a main effects model at more than 5 interacting loci

6.22E-07

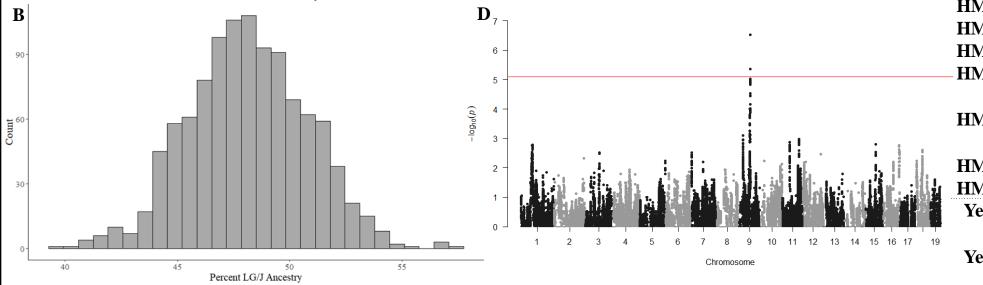
1.62E-06

3.03E-07

2.09E-06


5.71E-10

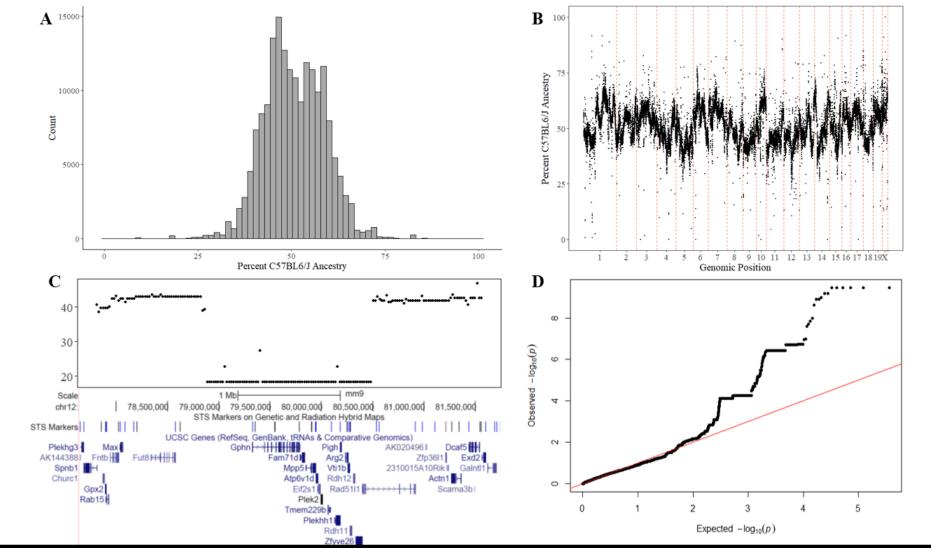
7.10E-08


6.74E-07

3.69E-06

4.09E-06

GxO Identifies Loci that Interact with Genetic Ancestry


(A+B) Distribution of Ancestral Strain contributions in (A) the 122 RI strains of the HMDP and (B) the 1063 mice of the LG/J x SM/J AIL.

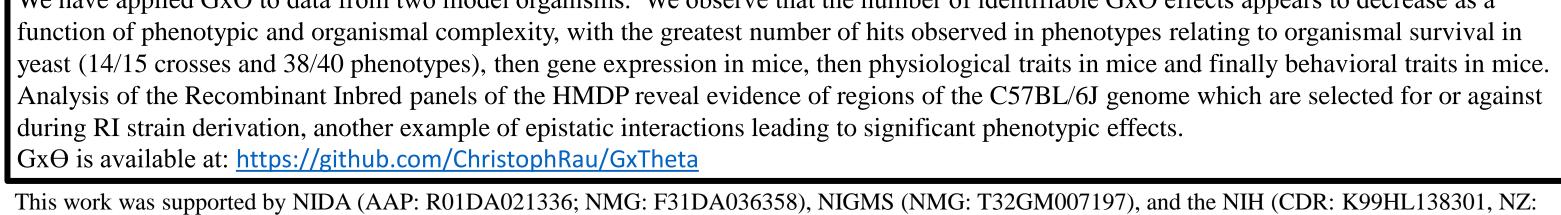
(C) Gx Θ Manhattan plot for Left Ventricular Mass one week after treatment with Isoproterenol from the HMDP

(D) GxO Manhattan plot for Plasma Glucose Concentration in the LG/J x SM/J AIL

HMDP	Heart rate PT	18	9408717	rs29769121	2.37E-06
HMDP	Heart rate Control	Х	48286693	rs30272504	2.68E-06
HMDP	Left atrium PT	16	54550810	rs51319671	2.18E-06
HMDP	LVIDs Control	Х	48286693	rs30272504	2.92E-06
	Left ventricular				
HMDP	mass 1 week PT	3	148140470	rs31313229	2.91E-06
	Left ventricular				
HMDP	mass 2 weeks PT	17	72564961	rs50549031	8.65E-08
HMDP	Right atrium PT	16	49837267	rs50479702	4.13E-07
Yeast	Cross 2999: EGTA	XIV	622639	NA	2.91E-07
	Cross 2999:				
Yeast	Lithium Chloride	IV	519675	NA	1.04E-07
	Cross 2999:				
Yeast	Lithium Chloride	XII	341678	NA	1.16E-05
	Cross 2999:				
Yeast	Manganese Sulfate	XIV	622639	NA	2.30E-06
	Cross 3043:				
Yeast	Manganese Sulfate	XVI	206053	NA	4.17E-10
	Cross 3043:				
Yeast	Paraquat	XV	410166	NA	3.14E-08
Yeast	Cross 3043: YNB	XV	561457	NA	3.67E-07
Yeast	Cross 3043: YPD	XV	561457	NA	2.50E-06
Yeast	Cross B: Maltose	VII	1067754	NA	1.20E-07

Identification of Selection in HMDP RI Strains

Chr	Start (MB)	End (MB)	Number of SNPs	Average B6 Ancestry	Average Significance	Genes of Interest
1	10.76	10.94	21	10.66	7.96E-05	Сраб
1	59.45	60.04	54	16.22	5.50E-04	Bmpr2
1	134.46	134.71	10	87.52	0.0048	Nfasc
11	64.49	64.53	5	18.18	0.0011	Myocd
11	110.82	110.98	18	85.75	0.0077	Kcnj2
12	79.00	80.36	72	18.43	0.0011	Gphn
12	106.88	107.63	49	19.15	0.0014	Pigh
15	4.74	6.12	50	18.14	0.0011	Prkaa1
18	5.46	8.96	246	82.50	0.017	Epc1


(A) Distribution of Ancestral Strain (C57BL/6J) contributions for each SNP present in the 122 RI strains of the HMDP (B) Percent C57BL/6J ancestry by SNP position across the genome

(C) A highlighted region on chromosome 12 with significant depletion of C57BL/6J ancestry in the HMDP (**D**) A QQ plot demonstrating significantly more regions with

C57BL/6J loss/gain than would be expected by chance. λ =1.07

Conclusions

We have applied $Gx\Theta$ to data from two model organisms. We observe that the number of identifiable $Gx\Theta$ effects appears to decrease as a

K25HL121295, U01HG009080, and R01HG006399)