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(1) Blm overexpression in Drosophila imaginal eye discs reduces the amount of DSBs, indicating that copy number gain (and presum-
ably overexpressed) BLM could reduce the number of DSBs in cancer to promote basal genomic stability and persistence.
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BACKGROUND AND INTRODUCTION

Figure 1. (A) Double Strand Break (DSB) repair mediated by Homolgous Recombination (HR) repair. Double Holliday Junction (dHJ) inter-
mediates are one model for how HR repairs DSBs. Di�ering dHJ cleavages at four sites (�lled vs. open arrowheads) result in distinct hetero- 
and homoduplex DNA arrangements in repair products. Some products have four distinct DNA duplexes surrounding the repaired DSB 
(left), while others have three (right). These arrangements help determine where a DSB originated and how it was repaired. (B) Mismatch 
Repair (MMR) converts informative heteroduplex DNA to homoduplex DNA, making �nding where a DSB originated and how it was re-
paired di�cult to interpret depending on how the conversion occurs. This is done via canonical and short-patch (cMMR and spMMR) path-
ways. (C) A meiotic crossover (CO) model suggests use of an unligated dHJ and two site cleavage (resolution) rather than four site cleavage 
based on KO of MMR and the meiotic CO products observed8. Such a model could be applicable to mitotic COs (mitCOs).
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Figure 2. (A) Depiction of � �� �� � � � �� �male 
germline divisions. A mitCO during the 
Gonialblast division (callout box) results in 
spermatids with one of four products. (B) 
By mating males heterozygous for net-cn 
and homozygous for spMMR and cMMR 
(XPC- and Msh6-, respectively) knockout 
(KO) and Blm KO to net-cn females, mitCOs 
(e.g. between net and dppho) are recovered 
by screening male progeny for reciprocal 
product arrangements indicated by net, 
dppho, dpy, b, pr, and cn recessive markers 
(e.g. #1-4). Precise mitCO sites are then 
mapped via Illumina or Oxford Nanopore  
whole genome sequencing of one male, 
followed by Sanger sequencing to map re-
maining reciprocal products.
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Figure 4. (A) Schematic of GMR GAL4 driver expression area and 
representative images of wt and UAS Blm (Blm overexpression) 
� �� �� � � � �� �imaginal eye disc epithelia. GMR drives expression to 
the right of the second mitotic wave cells (dark band) in the larger 
eye disc, indicated by the black semi-oval outline. Representative 
images of wt and UAS Blm discs stained with DAPI (blue) and with 
the DSB marker rabbit (Rb) α-pH2Av (� �� �� � � � �� �H2A.X; red). (B) 
Violin plot of percent pH2Av signal in GMR GAL4 expression area 
shows UAS Blm decreases DSBs compared to wt (*p< 0.05, un-
paired t-test). Dashed line = median; dotted line = 1st and 3rd 

Figure 3. Percentanges of Various Cancers A�ected by BLM 
Copy Number Variation (CNV) Gain. While BLM has been previ-
ously implicated in both Bloom Syndrome and other cancers by 
a loss of function, recent data from The Cancer Genome Atlas 
(TCGA) instead show many cancers gain in BLM copy number, 
suggesting a potential alternative role for BLM in these cancers. 

(1) Mitotic Crossovers (mitCOs) resulting from Homologous Recombination (HR) repair of DNA are highly detrimental to cells, leading to potential 
loss of heterozygosity (LOH), genome instability, and cancer1,2.

(2) Bloom Syndrome Helicase (Drosophila: Blm; Human: BLM) has been shown to cause increased spontaneous mitotic crossover rates when 
absent in the Drosophila male germline, mammalian cells, and Human Bloom Syndrome cells3-7.

(3) Accurate interpretation of mitCO mechanisms in multicellular organisms was previously difficult due to obfuscation of heteroduplex DNA tracts 
via canonical and short-patch mismatch repair (cMMR and spMMR). Complete MMR knockout (KO) has only been acheived in Drosophila, lead-
ing to a new model for meiotic crossovers8.

(4) Gain in copy number of BLM has been observed in several cancers, suggesting potential alternative roles for Blm in these cancers. 
PRELIMINARY DATA AND RESULTS

HYPOTHESES
(1) Resolution of double Holliday Junctions (dHJ) will prevail as the mechanism for Blm KO spontaneous mitCOs.

(2) Alternative and/or secondary mechanisms may apply to mitCOs, such as one described for meiosis8.

(3) Blm overexpression will not cause overgrowth or tumor-like phenotypes in normal epithelia.

(4) Blm gain of copy number in certain cancers will promote growth through alleviation of replication fork damage, 
and prevent complete collapse of genome stability through HR.

CONCLUSIONS
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