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Introduction
• Complex-I mitochondrial diseases are associated with 

mitochondrial myopathy, progressive 
neurodegeneration,  and shortened lifespan.

• The ND2 (NADH dehydrogenase 2) gene encodes the 
ND2 protein subunit of complex-I.

• Drosophila melanogaster ND2del1 mutants exhibit 
behaviors such as paralysis that are similar to the 
effects of mitochondrial complex-I mutations in 
humans. 

• Interactions between proteins encoded by 
mitochondrial and nuclear genomes are necessary for 
overall fitness and mitochondrial function.

Mitochondrial diseases exhibit phenotypic variation in 
human populations. There is a lack of studies aimed at 
understanding the causes for this variation. Genetic and 
metabolic variation present in a population might explain 
this observed disease phenotype variation. 

Methods
• ND2del1 flies were backcrossed to w1118 flies
• Bang Assay: Flies are paralyzed using a vortexer
• Recovery Time: Required duration of time to recover 

from paralysis, measured in seconds.

• Performing experiment 2 allowed us to test for 
reproducibility of the ND2del1 phenotype.

Results:
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Figs. 1, 2: Recorded recovery times for both experiments 1 and 2 following bang assays. Flies that 
recovered from mechanical paralysis immediately were assigned a value of zero seconds. “Recovery” was 
defined as a fly’s ability to completely stand up. Previous tests on the experiment 1 dataset demonstrated 
no background effect of the DGRP on bang sensitivity. Both datasets demonstrated significant variance in 
recovery times between different DGRP and control lines (Kruskal Wallis: 𝜒2= 259.02, df = 21, P < 2.2 x 10-

16 for the experiment 2 dataset and 𝜒2= 2357.8, df=166, P < 2.2 x 10-16 for the experiment 1 dataset). This 
indicates significant variance in mutant ND2 phenotypes between different genotypes. 

Fig. 5: Visualizing the spread of recovery time 
values within lines from the experiment 2 dataset. 
Bars represent standard errors within each line. 
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Fig. 3: Average Recovery Time Values for each 
DGRP and control line from experiment 2. The 
average recovery time across all lines (dashed red 
line) is equal to 15.097. 

Fig. 4: Correlation between median recovery time 
values from both experimental datasets. The two 
datasets demonstrated mild correlation in median 
recovery times between corresponding different 
DGRP and control lines (Pearson’s r= 0.69, df = 20, P < 
0.0004). 

Fig. 6: Testing for ND2 effect in comparison to 
wildtype w1118 from the experiment 2 dataset. 
Average recovery time of ND2 is 2.48 seconds and 
average recovery time of w1118 is 0 seconds among 
48 samples per line. 

Fig. 7 (right): Attempt at conducting GWAS on 
experiment 1 dataset to identify possible SNPs 
associated with mutant ND2 phenotype variation. 
Dataset consisted of 164 distinct DGRP lines as well as 
ND2 and w1118 controls from 23 groups. No significant 
SNPs were identified.

Discussion
Significance: 
• Our results demonstrate significant evidence for

genetic variation for mitochondrial variation (Figs. 
1-3, 5). 

• Our results were significantly correlated between 
both datasets (Fig. 4), indicating that the ND2del1

phenotype is reproducible. 
• Our results confirm and expand upon the 

conclusions of previous studies that have indicated 
links between mitochondrial haplotypes and 
nuclear genomes.

• Collectively, these results suggest a possible 
explanation for variable mitochondrial complex-I 
disease phenotypes within populations.  

Future Work:
• Test for heteroplasmy between lines
• Why: As a possible explanation for why ND2del1

did not demonstrate significant bang sensitivity 
in comparison to wild-type w1118 (Fig. 5). 

• Conduct targeted metabolomics for metabolites 
such as NAD+.
• Why: Previous studies demonstrated links 

between variable NAD+ concentrations and 
complex-I dysfunction as well as links between 
the Drosophila metabolome and age-related 
disease phenotypes.

Conclusion
Our results indicate significant epistatic interactions 

between nuclear and mitochondrial alleles for a 
mitochondrially encoded mutation associated with 

neurodegeneration. 
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Objective

To determine how nuclear 
genetic variation present in a 
population can exacerbate or 
ameliorate the effects of the 
ND2 gene mutation.   
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