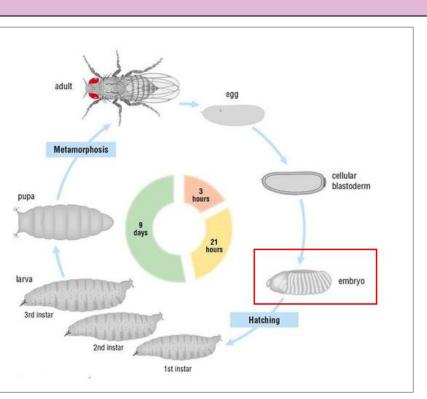
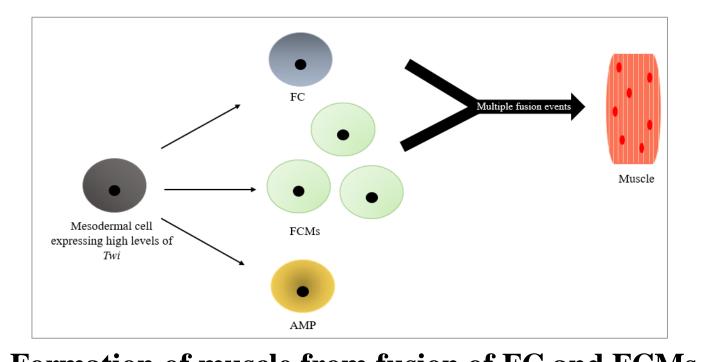


Contact: Sharon.tang2@baruchmail.cuny.edu


Motor Neuron Connections and Innervation of Muscles in Drosophila melanogaster

Sharon Tang¹, Krista C. Dobi^{1,2}

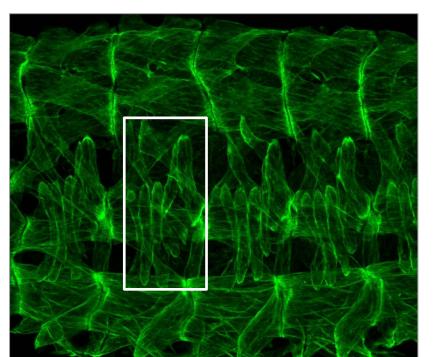

1. Department of Natural Sciences, Baruch College CUNY, New York, NY

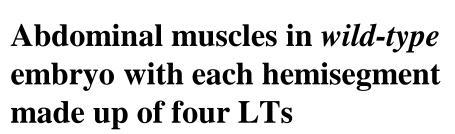
2. PhD Program in Molecular, Cellular and Developmental Biology, The Graduate Center, CUNY, New York, NY

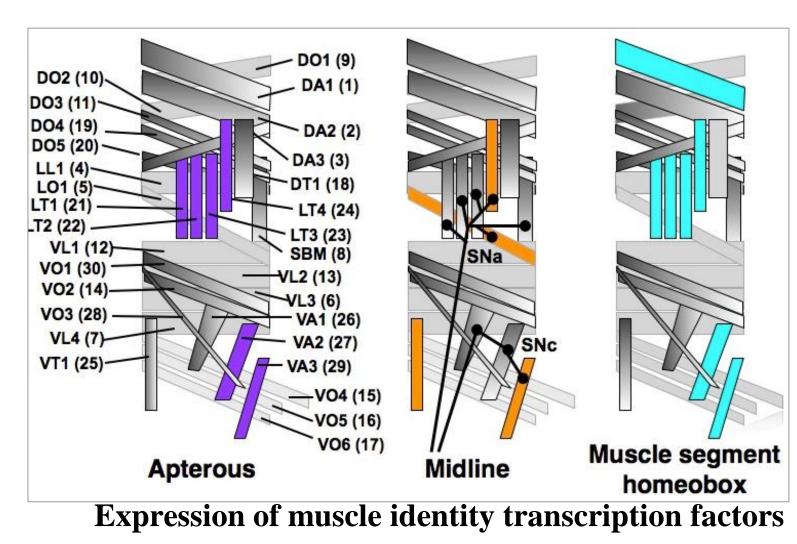
Introduction

Drosophila life cycle

Formation of muscle from fusion of FC and FCMs


Larval Somatic Muscles


- O Develop during embryogenesis¹
- O Identity genes transcription factors specify muscle properties^{1,2}
- O Unique characteristics such as size, shape, attachment sites, and innervation patterns by motor neurons¹


Motor Neuron Innervation

- O Three types of myoblasts³
 - Founder cells (FCs) regulate muscle formation AND defasciculation of motor axons⁴
 - Fusion-competent myoblasts (FCMs)
 - Adult muscle precursors (AMPs)
- O Motor axons exit central nervous system via Segmental nerve (SN), Intersegmental nerve (ISN), and Transverse nerve (TN)⁵

Focus: Motor neuron innervation by SNa in abdominal muscles specifically lateral transverse (LTs) muscles (shown in white box)

Methodology

Genetics

 Well-characterized loss-of-function mutants; heterozygotes excluded using marked balancer chromosomes

Embryo Collection and Fixing

- o Embryos collected on apple juice agar plates
- Dechorionated in bleach
- o Fixed in 4% paraformaldehyde and heptane
- Devitellinized using heptane and methanol

Staining

- Antibodies
 - Muscle: myosin heavy chain and tropomyosin
 - Motor neurons: FITC-HRP and Fas-II

Imaging

- Zeiss LSM880 Confocal Plan Apochromat 40X/1.2 NA
- Images processed Fiji/Image J

Results OreR and loss-of-function mutants stained with tropomyosin and Fas-II Tropomyosin Fas-II Merged muscle pattern motor neurons OreR ap^{UGO35} mid^{1} $msh\Delta 68$ -lacZ OreR and ap^{UGO35} stained with myosin heavy chain and FITC-HRP MHC FITC-HRP Merged muscle pattern motor neurons **Ore**R ap^{UGO35}

Discussion

Visualization with Fas-II

- o *OreR* shows four LTs, corresponding with proper defasiculation of SNa axons
- All mutants lack one or more of the LTs or develop abnormally shaped LTs
- Defects in LTs correspond to disruption in proper neuron innervation

Visualization with FITC-HRP

- Four distinct LTs in *OreR*, with proper nerve branching
- o Three LTs or LTs incorrectly attached together at center in some hemisegments of ap^{UGO35}

Summary: Mutant genotypes with implications in muscle pattering also show disruption in neuron innervation

Future Directions

Genotypes

- Collect and observe more genotypes
- o Gain-of-function mutants (Gal4/UAS system)

Antibodies

Use different antibodies: Horse-radish peroxidase
(HRP), Fasciclin III, Islet-1 and connectin

Staining

Live imaging

References

- 1. Dobi KC, Schulman VK, Baylies MK. Specification of the somatic musculature in *Drosophila*. *WIREs Dev Biol* 2015. doi: 10.1002/wdev.182
- 2. Schulman VK, Dobi KC, Baylies MK. Morphogenesis of the somatic musculature in *Drosophila* melanogaster. WIREs Dev Biol 2015. doi: 10.1002/wdev.180
- 3. Beckett K, Baylies MK. The development of the *Drosophila* larval body wall muscles. *International Review of Neurobiology* 2006, 75:55-70. doi: 10.1016/s0074-7742(06)75003-6
- 4. Landgraf M, Baylies M, Bate M. Muscle founder cells regulate defasciculation and targeting of motor axons in the *Drosophila* embryo. *Current Biology* 1999, 9:589-592
- 5. Landgraf M, Bossing T, Technau GM, Bate M. The origin, location, and projections of the embryonic abdominal motorneurons of *Drosophila*. *J Neurosci*. 1997;17(24):9642–9655. doi:10.1523/JNEUROSCI.17-24-09642.1997

Acknowledgements

The authors would like to thank M. Baylies, S. Abmayr* and F. Schnorrer for stocks and reagents; Y. He at the CUNY Advanced Science Research Center for technical assistance; current and former Dobi Lab undergraduate students; and the *Drosophila* community at Baruch College. This work was supported by PSC-CUNY Awards and a Eugene M. Lang Faculty Fellowship to K.C.D. and Grants-in-Aid of Research administered by Sigma Xi, The Scientific Research Society

