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In a selective sweep, an adaptive allele quickly rises in frequency, 
producing recognizable patterns in surrounding genetic diversity. 
Deep learning is an efficient way to use this signal to detect 
sweeps. 
Is the pattern of surrounding genetic diversity informative 
about the evolutionary history of a sweep? Can we estimate 
relevant sweep parameters from it? 

Supervised learning inference methods are useful when the 
problem is hard to analyze mathematically, like selective sweeps 
under complex population histories. But only simulations can 
provide the necessary amount of training data for evolution. 
How do we simulate realistic sweep scenarios? How do we 
create simulations that are relevant to empirical applications? 

The parasite Plasmodium falciparum causes malaria and Thai 
populations have evolved resistance to all known classes of 
antimalarial drugs. The loci responsible for resistance are recently 
finished hard and soft sweeps, well characterized in the literature1. 
How well does a model to infer parameters of selective 
sweeps perform on these positive control loci in P. falciparum?

To estimate parameters of sweeps with machine learning, we simulate sweep 
scenarios, calculate summary statistics on the simulated populations, and train a 
model to estimate the desired parameter. The model’s power is validated on 
simulated data and can then be applied to empirical data. 

SLiM enables forward simulation of arbitrary evolutionary scenarios. We implement 
simulations of selective sweeps with tree sequence recording and a coalescent burn-
in period to allow very fast computing times. 

The simulated data must fit the empirical data as much as possible. We take well 
established mutation and recombination rates from the literature, then adjust 
population size until the distribution of SNP number per simulated window matches 
the empirical distribution. 

Within each genomic window, we do a moving subwindow analysis, calculating 
summary statistics across the chromosome for each subwindow size. The result is a 
“brick” of data. A convolutional neural network is able to leverage the full correlation 
structure of genomic position, summary statistic and subwindow sizes from this 
representation.

Fitting simulated training data to empirical data is the most important step in using supervised learning in population genetics. SLiM is the ideal tool for this, as it allows simulation of sweep scenarios under 
realistic, biological model, as well as partial sweeps. As a forward simulation, SLiM provides great flexibility in modeling realistic populations, including complex population structure and demography. It will be an 
important tool for generating training datasets for applications of machine learning in population genetics. Further progress needs to be made on how to formally fit simulations to empirical populations; most 
current studies validate their performance on human data, assuming a “good-enough” fit with established demographic hypotheses that aren’t available for other organisms. 

If the model is trained on appropriate simulated data, as discussed, supervised learning model has great power to infer population parameters. Clearer signatures come, predictably, from stronger and harder 
sweeps. Supervised learning methods, including deep learning methods, have the potential to inform and generate hypotheses about the evolution of drug resistance loci in pathogens, which often undergo 
selective sweeps. We illustrate that by applying our model to Plasmodium falciparum, where it predicts parameters for known sweeps that are in line with the expectations from previous molecular studies of these 
loci.
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Statistics averaged over all simulations reveal that sweep origin and strength 
produce distinguishable patterns. However, no single summary statistic drives most 
of the method’s power. 

Misspecifying demographic history when training the model can decrease the 
method’s power, depending on how strong the misspecification is.  

The method can be applied to a sample of incomplete sweeps. Low sweep 
frequency reduces power to estimate selection strength, but estimates of softness 
and sweep origin are robust to incomplete sweeps.
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How strong was the sweep? Was it a hard or a soft sweep?

Did it happen from standing 
genetic variation or recurrent de 

novo mutation?

We fit one neural network to estimate each of the following sweep parameters:

The model performs well in estimating selection coefficient, and 
estimates sweep softness and origin with an accuracy above 90% if 
sweeps are strong. 

If the true population size is 10 times larger than the one the 
model was trained on, the model underestimates the true 
selection coefficient, consistent with a signature that depends on 
sweep time. 

Estimates of parameters of known sweep loci from P. falciparum 
match what we expect from the literature.
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