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Abstract 
Bulk segregant analysis (BSA) is a genetic mapping technique for 
identifying the loci that underlie phenotypic variation. The basic 
principle of this method is to select two pools of individuals from 
the opposing tails of the phenotypic distribution for the trait of 
interest. These pools are then each sequenced and scanned for 
alleles that show characteristically diverged frequencies between 
the pools, indicating that they could be responsible for the 
observed trait differences. BSA has already been successfully 
applied for the mapping of quantitative trait loci (QTLs) in 
organisms ranging from yeast to crops. However, these studies 
have typically suffered from rather low genomic resolution, and 
we still lack a detailed understanding of how this resolution is 
affected by experimental parameters. Here, we use coalescence 
theory to derive analytical results for the expected mapping 
resolution of BSA. We first show that in an idealized population 
without genetic drift the expected mapping resolution is inversely 
proportional to the recombination rate, the number of generations 
of interbreeding, and the number of genomes sampled, as 
intuitively expected. In a finite population, coalescence events in 
the genealogy of the sample reduce the number of potentially 
informative recombination events during interbreeding, and thus 
the achievable mapping resolution. This is incorporated in our 
theory by introducing an effective population size parameter, 
specified by the pairwise coalescence rate in the interbreeding 
population. We show that the mapping resolution predicted by our 
theory is in excellent accordance with numerical simulations. Our 
framework can enable researchers to assess the expected power 
of a given BSA experiment, and to test how experimental setup 
could be tuned to optimize mapping resolution.

BSA Genomic Resolution 
Ancestry breakpoint: the point where ancestry changes along a chromosome, e.g. the 
ancestry from the AA strain in blue switches to the aa strain in orange, or vice versa.

D: the distance to the closest ancestry breakpoint downstream of the QTL, observed 
among all chromosomes in the sample.

The distance D to the closest ancestry breakpoint located downstream of the QTL in a 
sample of 2s gametes from the F1 (representing a sample of s diploid individuals from the 
F2) will then be an exponential random variable with cumulative density function:

P(D ≤ d) = 1 − e−2rsd, with E[D] =
1

2rs
. [1]

Solution Analysis & Numerical Validation 
We conducted forward-in-time, individual-based simulations of a BSA experiment to evaluate 
the accuracy of our analytical results. We modeled a trait determined by a single QTL, located 
at the center of a chromosome of length 100 Mbp with a uniform recombination rate of r = 10-8

 

per bp and generation. The free parameters of our simulation model are the sample size (s), the 
population size (N), and the length of the BSA experiment (t). Simulations were implemented in 
SLiM, using tree sequence recording to track ancestry segments along each chromosome (this 
allowed us to directly detect the true location of ancestry breakpoints). 

Model Comparison 
We now take a closer look at the expected mapping resolution derived in Eq. [6] and discuss 
how it relates to the infinite population model. When t << 2N, it specifies a regime where the 
probability that a given pair of lineages coalesces over the course of the experiment is still 
small. Under this assumption, we can perform a Taylor approximation of the exponential in Eq. 
[6]:


Eq. [7] shows how the infinite and finite population models differ from each other. In the infinite 
population model, mapping resolution was simply inversely proportional to each of the 
recombination rate, sample size, and length of the experiment. In the finite population model, 
mapping resolution is still inversely proportional to the recombination rate, but the effects of 
sample size and experiment length are now attenuated by a logarithm.

We further note that s and t enter Eq. [7] only in the form of the product st. Thus, varying each of 
these two parameters by the same factor is expected to produce a similar impact on the 
expected mapping resolution (as long as t << 2N still holds). Eq. [7] also shows us where these 
effects start to become relevant. If st << 2N, we can further approximate:


Thus, the infinite and finite population models nicely converge in this regime.

ln(2s(e t
4N − 1) + 1) ≈ ln(

st
2N

+ 1) ⇒ E[D] ≈
1

2rNln( st
2N + 1)

. [7]

Infinite Population vs Finite Population Model 
Infinite Population: extend the processes from above to s sampled individuals from the 
Ft. As we neglect drift here, all lineages are independent of each other. The expect D 
would thus be:


Finite Population: suppose we have a diploid population of size N under the Wright-
Fisher model, and we denote the number of haploid lineages as x(n) at generation n. 
Hence, in the final generation Ft with s diploid samples, we have x(t)=2s (see figure in the 
third column).

Recursive Exact Solution: the expected number of lineages in generation n can be 
estimated based on results of occupancy distributions using a recursive expression:


With the above expression, we can then sum up the expected number of lineages in each 
generation to calculate the expected total length (T) of the genealogy, where all the 
ancestry breakpoints could be generated, and estimate the expected D in the finite 
population model as:


The factor of 1/2 in the above expression characterizes the probability of heterozygosity 
at any given genomic position in generation n>2, where ancestry breakpoints could be 
generated. The only exception is for the lineages in generation n=2, whose parents are all  
heterozygous at any genomic position from the BSA experiment setup.

Approximate Closed-form Solution: by expressing the recursive solution in a differential 
equation, we can also solve it for a deterministic approximation of the expected number 
of lineages at generation n:


The expected total length (T) of the genealogy in this case can then be integrated from 0 
to t:

 

E[x(n)] =
2s

(2s − (2s − 1)e− t − n
4N )

. [5] (Maruvka et al . 2011)

E[T ] =
1
2 ∫

t

0
E[x(n)] ⇒ E[D] =

1
rE[T ]

=
1

2rNln(2s(e t
4N − 1) + 1)

. [6]

E[D] =
1

rst
. [2]

E[x(n − 1) |x(n) = i] = N − N(1 −
1
N

)i . [3] (Maruvka et al . 2011)

E[T ] =
t

∑
i=3

E[x(n)]
2

+ E[x(2)] ⇒ E[D] =
1

rE[T ]
. [4]

ln(
st
2N

+ 1) ≈
st
2N

⇒ E[D] ≈
1

rst
. [8]

Bulk Segregant Analysis (BSA) 
BSA is a mapping approach that combines certain ideas from 
linkage mapping and GWAS. It starts from two parental strains of 
contrasting phenotypes. These strains are then crossed to 
generate an F1 population, which is further interbred for several 
generations while maintaining a sufficiently large population size 
to allow recombination to break up linkage from the two parental 
strains. In the final generation, two pools of individuals are 
selected from the tails of the phenotypic distribution. The alleles 
responsible for trait differences (as well as any alleles linked to 
them) should then show characteristic frequency differences 
between the two pools, while alleles at other loci should still be 
segregating at similar frequencies to those expected in the F1. 


