LLN3: Identification and characterization of a potential regulator of axonal transport

Katherine M. Klier ${ }^{1}$, Ronald S. Petralia ${ }^{2}$, Ya-Xian Wang ${ }^{2}$, and Catherine M. Drerup

1. Eunice Kennedy Shriver National Institute of Child Health \& Human Development; National Institutes of Health; Bethesda, MD 20892, USA
2. National Institute of Deafness and other Communication Disorders; National Institutes of Health; Bethesda, MD 20892, USA

Introduction

Transport of cellular cargos along axons is critical for neuronal health and function. Disruptions in cargo transport are causal in many neurodegenerative diseases. To identify modulators of cargo transport, we conducted a forward genetic screen using the zebrafish lateral line as a model system. Through our screen, we identified a novel mutant line, $\ln 3$, which contains axon terminal swellings, a phenotype indicative of cargo accumulation and defective transport. Further investigation into the $\ln 3$ phenotype and underlying genetic cause will provide insight into regulatory factors that are vital to ensure properly functioning axonal transport.

Zebrafish Posterior Lateral Line: A Model to Study Axonal Transport

Zebrafish embryos and larvae are ideal for inaging due to their treldere dwing devoponen

ENU Screen to Identify Novel Regulators of Retrograde Axonal Transport: lln3

Methods

Mutant characterization using fixed and live imaging of zebrafish larvae at 4 days post fertilization (dpf).

Transmission electron microscopy (TEM) analysis of axon terminal ultrastructure.

RNA-seq based single nucleotide polymorphism (SNP) mapping combined with CRISPR/Cas9 G0 screening to determine the causative gene underlying the $\ln 3$ mutant phenotype.

Characterization

1. TEM Imaging of Axon Terminals Reveals Morphological Differences Between Wild Type and lln3 Mutants

2. Neurofilament Accumulates in Axon Terminals of lln3 Mutants

3. Dynein Light Intermediate Chain is Abnormally Distributed in lln3 Mutants

4. Dynein Motility is Disrupted in lln3 Mutants

Gene Identification

Conclusions

lln3 mutants show axon terminal swellings, a phenotype indicative of defective axonal transport.
TEM imaging reveals disruptions in axon terminal morphology as well as accumulation of various cargos such as autophagosomes
Neurofilament is seen to accumulate in axon terminals as is dynein light intermediate chain. Gross disruptions in dynein localization and transport are seen in $\ln 3$ mutants
RNA mapping reveals that the mutation is most likely to be a missense mutation located on a telomere of chromosome 10.

Future Directions

Future studies will focus on employing additional methods to identify the mutation underlying the $l \ln 3$ phenotype. These methods include gene overexpression and in situ hybridization.
Additional characterization of $l \ln 3$, such as quantification of structures seen in the TEMs and examining microtubule dynamics, will potentially give insight into which specific components of axonal transport are responsible for the phenotype

Acknowledgments

Funding from the National Institute of Child Health \& Human Development. We would like to thank the NIH zebrafish facility for zebrafish husbandry.

