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Correspondence between predicted and realized variances

Diverse crops ranging from staples (e.g., cassava) to cash crops (e.g., cacao) are both outbred and clonally
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Pedigree, Haplotypes, Recombination and Training Data
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GBLUP using sommer mixed-model solver n R * Dominance and total variance can be predicted in addition to the additive component

A = Model with additive component only
AD = Model with additive + dominance component
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D is variance-covariance matrix among markers (i.e. linkage disequilibrium)
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