Localizing tra-2 mRNA in germ cells
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Abstract: C. elegans hermaphrodites are essentially female worms that have achieved self-fertility. Making sperm in an otherwise female body requires precise regulation of the feminizing gene, tra-2. While TRA-2 is ubiquitously expressed in the soma, its regulation is of special interest in the germ line where sperm
are specified. There are two major mRNA isoforms of tra-2, tra-2a (4.7 kb) and tra-2b (1.8kb) (Okkema and Kimble 1991). The 1.8 kb transcript is specific to the hermaphrodite germline (Okkema and Kimble 1991, Kuwabara et al. 1998). The 4.7 kb transcript is predicted to be a transmembrane receptor for the male-
specific protein HER-1 (Hamaoka et al. 2004). HER-1 represses tra-2 activity to allow male cell fates in XO animals but is not expressed in XX hermaphrodites (Trent et al. 1991). Instead, available evidence suggests that hermaphrodites repress tra-2 by the binding of a GLD-1/FOG-2 heterodimer to its 3’ UTR (Jan
et al. 1999, Clifford et al. 2000). While tra-2 mRNA is abundant in the germline, epitope-tagged TRA-2 (TRA-2::HA) was undetectable in the presence of GLD-1 and FOG-2, and only slightly elevated in their absence (Hu et al. 2018). We are now investigating the regulation of tra-2 at the mRNA level using single-
molecule fluorescence in-situ hybridization (sm-FISH). We hypothesized that the 4.7 kb version of tra-2 is not present in the hermaphrodite germline, as the 1.8 kb transcript contains all the domains necessary for interaction with both fem-3 and tra-1 (Mehra et al 1999, Lum et al 2000). The data suggest tra-2a is
expressed in the germ line, but at lower levels than tra-2b. This indicates some TRA-2 membrane protein makes it to the ER, and perhaps even to the surface of hermaphrodite germ cells. Full-length TRA-2 could then be processed by TRA-3 as it is in the soma. tra-2b is consistently expressed in the rachis and
oocytes of adult worms. We will further investigate tra-2 regulation by using sm-FISH in a mutant that lacks GLD-1 binding sites on the 3’'UTR (tra-2(e2020)). We expect this RNA to be de-regulated and potentially localize differently than wild type. We are also investigating the mechanism of FOG-2 action, with an
emphasis on identification of additional protein-protein interactions.
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