\leftrightarrows THE UNIVERSITY OF TENNESSEE college of Eninezang \& COMPUTER SCIENCE

Probability Landscape of Yeast Replicative Aging Derived from Protein-Protein Interaction Network
 Haobo Guo, Hong Qin, Department of Computer Science \& Engineering, SimCenter, University of Tennessee Chattanooga

Figure 1. A yeast aging landscape based on the probabilities (P) of that the genes with different RLS ratios show more interactions in the empirical PIN than those in random null network models. $U=-\log _{2}(P)$ is used in the landscape such that the basins (blue) and ridges (yellow) correspond to regions of high P and regions of low P, respectively. Figures \mathbf{a} and \mathbf{b} show the 2D contour and 3D landscape. X-axis is the RLS ratio between mutation and wild type under normal (YPD) conditions, and Y-axis is the RLS ratio between the mutation under caloric (YPD) conditions, and Y-axis is the RLS ratio between the mutation under caloric
restriction (CR) and normal (YPD) conditions, respectively. Red genes show restriction (CR) and normal (YPD) conditions, respectively. Red genes show
mutation:WT > 1.2 and CR:YPD > 1; orange genes show mutation:WT > 1.2 and mutation:WT > 1.2 and CR:YPD > 1; orange genes show mutation:WT > 1.2 and
CR:YPD < 1; purple genes show mutation:WT < 0.8 and CR:YPD > 1; blue genes show mutation:WT < 0.8 and CR:YPD <1, and the rest genes are shown in gray.

A Yeast Aging-Fitness Landscape

Figure 2. A aging-fitness landscape both the RLS ratio (mutation:WT) and growth fitness (under YPD) data are used (X- and Y-axis, respectively). 20 quantiles are used for both set and the RLS ratio or fitness scores are normalized to $[0,1]$. The coloring of the genes is that used in Figure 1 (i.e., based on RLS ratios). It can be seen that some of the genes with high CR:YPD RLS ratios show low fitness, such as the ribosomal-related genes RPL9A, RPL31A, and RPL20B, and subunits of the prohibitin complex PHB1 and PHB2. In RLS-Fitness space, genes in basins (blue in the figure) exhibit enriched interactions to each other in the PIN than those to null models.

Aging Landscapes at Different Fitness Levels

Figure 3. Aging landscape at different Fitness levels. The yeast PIN contains $>611 \mathrm{k}$ triangles (or cliques of order 3); however, the random null models has $424 \mathrm{k} \pm 22 \mathrm{k}$ triangles, much less than the empirical PIN. The triangles contribute to the clustering of the network. We compare the 3D-coordinates (explained below) of three attributes, RLS ratios as shown in Figure 1 and Fitness in Figure 2, and calculated the frequencies of all coordinates in the empirical PIN and compared with the null models. This analysis allows us to evaluate the replicative aging landscapes of genes with different fitness scores. Here 10 groups of genes with different fitness scores (10 quantiles, the median fitness is shown in each figure) and the genes in different RLS categories (red, purple, orange, blue as shown in Figures 1 and 2) have been labeled in each contour map.

A For 3 attributes, e.g., R (RLS ratio of mutation:WT), D (RLS ratio of CR:YPD, and F (fitness), 6 coordinates can be obtained from a triangle $A B C$
B C $\left(R_{A}, D_{B}, F_{C}\right),\left(R_{A}, D_{C}, F_{B}\right),\left(R_{B}, D_{A}, F_{C}\right),\left(R_{B}, D_{C}, F_{A}\right),\left(R_{C}, D_{A}, F_{B}\right),\left(R_{C}, D_{B}, F_{A}\right)$

Conclusions

Probability landscapes were constructed based on interactions between different groups of genes in the replicative lifespan and fitness categories. Genes located in basins of these landscapes exhibit enriched interactions than random null network models, whereas genes in ridges (or barriers) of the landscapes have suppressed interactions, respectively.

References

1. Massov, S. \& Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910-913 (2002),
. Qin, H., Lu, H. H., Wu, W. B. \& Li, W.H. Evolution of the yeast protein interaction network. Proceeedings of the National Academy of
2. Sciences 100, 12820-12824 (2003).
3. McCormick, M.A., Delaney, J.R., Tsuchiya, M.. Tsuchiyama, S., Shemorry, A., Sim, S., Chou, A.C.C.-., Ahmed, U., Carr, D., and Murakami,

Acknowledgements

This work is supported by the NSF Career award 1720215 and 1761839 All simulations have been performed on the Ts 117 server at SimCenter. University of Tennessee Chattanooga

