Alary Muscles and Thoracic Alary Related Muscles: Atypical striated muscles maintaining internal organs positions

 Laetitia Bataillé', Nathalie Colombié1, Aurore Pelletier¹, Achim Paululat², Gaëlle Lebreton¹, Yannick Carrier ${ }^{1}$ Jean-Louis Frendo¹, and Alain Vincent ${ }^{1}$.'Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, ${ }^{2}$ University of Osnabrück, Department of Biology \& Chemistry, Zoology and Developmental Biology ;
 Text and figures from Bataillé et al., Development 2020, in press : doi: 10.1242/dev. 185645

centre de Biologie Intégrative

 visceral attachment being the ground state. TARMs and AMs are the first example of multinucleate striated muscles connecting the skeleton to the cardiac and visceral systems in bilaterians, with multiple physiological functions.

Figure 1: TARMs/AMs attachment to specificicinternal organs is under Hox control
(A) Stage 16 embryo showing the AMs and TARMs (green), somatic muscles (reed), and gut (A) Stage 16 en
contours, (blue) contours, (blue)
(B) Shematized AMs connections to the cardiac system (red), lymph gland (LG, yellow) and
(ip Sell tip cell of the Malpighian Tubule (MT, orange) and TARMs connections to the proventriculus
(Pv), dorsal gastric caeca (Gc), and first midgut constriction. Modified from Boukhatmi et al,, (Pv), dorsal gastric caeca (Gc), and first midgut constricion. Modified from Boukhatmi et al.,
Deevelopment, 0114 .
(C) Celsed (C) Coloreded Scr, Antp, Ubx, Abd-A and Abd-B expression in TARMs/AA
induces TARM apoptosis and the background state is visceral attachment.

Figure 2: AMs and TARMs adopt specific shapes to connect to different larval internal

 organs. (A) Dorsal view of an intact L3 larva, showing AMs and TARMs in green and pericardial cells(PC) and cardiobbasts in red. Anterior AMs connecting to the aorta display a "T" shape, posterior AMs maintain a delta-shaped connection to PCs distributed long the hea
$\left(B, B^{\prime}\right)$ Heart attachment to AMs and the dorsal wall is mediated by ECM
 (C-D) TARM connects to the first midgut loop

Figure 3: AMs and TARMs are
uniquely deformable muscles.
uniquely deformable muscles. \quad inucleated, sarcomeric, contracting, and (A) Dorsal view of an $L 3$ larva showing the nuclei distribution (green) in AMs and
TARMs (red). (B-C) Dissected $\mathrm{L3}$ larva showing the striated structure of AMs and multiple dorsal protrusions.
(DE-E" Snapshots of a crawling larva (see movies in Development), illustrating the
high deformability of TARMs and AMs.

Figure 6: TARMs are
efficient food transit
(A, B) Anterior region of control (A, B) Anterior region of control and \gg Antp (no TARM) larvae; AMs and TARMs
are red, visceral organs green. (A^{\prime}, ${ }^{\prime}$) GFP channel only. TARM ${ }^{10}$ maintain Gc
 C, D ventral views of control and >>Antp (no TARM) larvae fed 45 min with blue
yeast. TARMS are required for eficient food transit to the gut.

Figure 5: AMs constrain the tracheal curvature in larvae A, B) Dorsal views of control (A) and >>rpr (no TARMS/AMs, B)
larvae. The tracheal trunk is underined in white and spacing indicated by double arrows.
(C) Tracheal curvatures in $A M E^{R}$-Gal4 (black line) and \gg ror
(a) (C) Tracheal curvatures in $A M E_{R}$ - $G a / 4$ (black line) and \gg ror
(blue line) $L 3$ lavae at the end of a peristaltic wave. The (blue line)
abdominal curve is is larger and dorsal trachea more distant from
the midline

Figure 4: AMs ablation induces a colapse of the dorsal vesse
 green. The number of PCs is unchanged following AMs abs ablation but the heart
lumen collapses. Heart beating is normal (not shown). lumen collapses. Heart beating is normal (not shown).
(C-E) control (C), \gg UAS-rpo (no AMs, D) and UAS-BNAi-pericardin (no ECM , (C-E") control (C), > $>$ UAS-rpo (no AMs, D), and UAS-RNAi-pericardin (no ECM,
F) larvae. FCs and cardioblasts are green, AMs red, somatic muscles and heart blue, the ECM and trachea, cyan. ${ }^{\prime}$.", E' C^{\prime}, D^{\prime}, E') transuversal views.. (C", D"', E") Corresponding chemes illustrating
(he forces exerted by AMs and dorsal anchoring "suspending" the heart within the forces
the body.

CONCLUSION and PERSPECTIVES : Drosophila organogenesis along with morphogenesis during embryonic development ends with larval hatching. Here we show that, during larval life, multiple internal organs remain physically connected to the exoskeleton by a web of thin and deformable muscles, the AMs and TARMs (Fig. 7). These atypical, asymmetrically attached muscles are required to maintain proper position of cardiac, visceral and respiratory organs within the coelomic cavity, and heart lumen opening, To the best of our knowledge, TARMs and AMs are the first example of multinucleate striated muscles connecting the (exo)skeleton to internal organs in bilaterians. It raises novel anatomical, physiological and evolutionary questions. Innervation of the heart and alary muscles in adult arthropods remains controversial. Integrating neuro-muscular connectivity into physiological roles of TARMs and AMs is a next challenge.

