Holocene sea level change drives different fates of two Asian horseshoe crab species

Qian TANG¹, Prashant SHINGATE², Yusli WARDIATNO³, Akbar JOHN⁴, Boon Hui TAY²,

Laura-Marie YAP⁵, Jasmin LIM⁵, Hor Yee TONG⁶, Karenne TUN⁶, Byrappa VENKATESH², Frank RHEINDT¹ ¹National University of Singapore, Singapore; ²Institute of Molecular and Cell Biology, Singapore; ³Institute Pertanian Bogor, Indonesia; ⁴International Islamic University Malaysia, Malaysia; ⁵Republic Polytechnic, Singapore; ⁶National Parks Board, Singapore

Overlapping distribution range but different habitat preference

Preferred habitats: Mangroves, mudflats

Introduction

Two of four extant horseshoe crab species, widely distributed across Southeast Asia¹

Ecological & commercial values

Conservation status is still under evaluation

Different dispersal capability

Mapping of resistance to dispersal (*DResD*²) indicates depthlimited dispersal of C

No significant resistance to dispersal of TG (data not displayed)

Methods

TG

~300 individuals across the Singapore Strait (SS)

Hundreds of thousand genomic SNPs using double-digest RADseq

Dispersal capability was examined using spatial autocorrelation and resistance mapping.

Genetic diversity was examined by calculating heterozygosity and effective population size

> Upper and lower 95% confidence limits of null spatial structure models are illustrated with red dash lines.

icient

0.1

CR disperses within 35km **TG** disperses beyond study area

Spatial autocorrelation analysis

(*GenAlEx*³) within 200km:

Different genetic diversity as evolutionary response

Conclusions

Capability of population genomic analyses at small

Effective population size (*LinkNe*⁵) over Holocene indicates:

Sea level rise and maintain at high level \rightarrow disconnection

PRIME MINISTER'S OFFICE

SINGAPORE

among habitats \rightarrow CR decline

Rapid sea level rise \rightarrow coastal area increase \rightarrow TG increase

Sea level maintain \rightarrow rapid mangrove formation in coastal area \rightarrow TG decline

References

1. Sekiguchi (1988). *Biology of horseshoe crabs*. 2. Keis et al. (2013). Journal of Biogeography 40, 915-927. 3. Smouse & Peakall (1999). *Heredity* 82, 561-573. 4. Giri et al. (2011). *Global Ecology and Biogeography* 20, 154-159. 5. Hollenbeck et al. (2016). *Heredity* 117, 207-216. 6. Bird et al. (2010). *Geology* 38, 803-806.

Acknowledgement

This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Marine Science Research and Development programme (Award No. MSRDP-P19). Field work is supported by the Ah Meng Memorial Conservation Fund.

spatio-temporal scale may redirect conservation

measures.

Dispersal capability and habitat preference determine species' evolutionary response to climate change.

Further decline in CR with impending sea level rise, whereas **TG** may increase but subject to habitat dynamics and human disturbance.