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Abstract

Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and
therefore most detection approaches only achieve optimal performances when sufficiently small genomic
regions (i.e., windows) are examined. Such methods are sensitive to window sizes and suffer substantial
losses in power when windows are large. Here, we employ mixture models to construct a set of five
composite likelihood ratio test statistics, which we collectively term B statistics. These statistics are
agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show
that they exhibit comparable power to the best-performing current methods, and retain substantially
high power regardless of window sizes. They also display considerable robustness to high mutation rates
and uneven recombination landscapes, as well as an array of other common confounding scenarios. More-
over, we applied a specific version of the B statistics, termed B2, to a human population-genomic dataset
and recovered many top candidates from prior studies, including the then-uncharacterized STPG2 and
CCDC169 -SOHLH2, both of which are related to gamete functions. We further applied B2 on a bonobo
population-genomic dataset. In addition to the MHC-DQ genes, we uncovered several novel candidate
genes, such as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally,
we show that our methods can be extended to account for multi-allelic balancing selection, and inte-
grated the set of statistics into open-source software named BalLeRMix for future applications by the
scientific community.

Introduction1

Balancing selection maintains polymorphism at selected genetic loci, and can operate through a variety2

of mechanisms (Charlesworth, 2006). In addition to overdominance (Charlesworth and Charlesworth,3

2010), other processes such as sexual selection (Cho et al., 2006), periodical environmental shifts (Bergland4

et al., 2014), pleiotropy (Andrés, 2001; Mitchell-Olds et al., 2007), meiotic drive (Ubeda and Haig, 2004;5

Charlesworth and Charlesworth, 2010), and negative frequency-dependent selection (Charlesworth and6

Charlesworth, 2010) can also maintain diversity at underlying loci. Due to the increasing availability of7

population level genomic data, in which allele frequencies and genomic density of polymorphisms can be8

assessed in detail, there is an expanding interest in studying balancing selection and detecting its genomic9

footprints (e.g., Andrés et al., 2009; Leffler et al., 2013; DeGiorgio et al., 2014; Gao et al., 2015; Hunter-10

Zinck and Clark, 2015; Sheehan and Song, 2016; Lonn et al., 2017; Sweeney et al., 2017; Guirao-Rico et al.,11

2017; Siewert and Voight, 2017, 2018; Bitarello et al., 2018; Ye et al., 2018; Cheng and DeGiorgio, 2019).12
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However, despite multiple efforts to design statistics for identifying balanced loci (e.g., DeGiorgio et al.,1

2014; Siewert and Voight, 2017, 2018; Bitarello et al., 2018; Cheng and DeGiorgio, 2019), performances of2

existing methods still leave room for improvement.3

Early methods applied to this problem evaluated departures from neutral expectations of genetic di-4

versity at a particular genomic region. For example, the Hudson-Kreitman-Aguadé (HKA) test (Hudson5

et al., 1987) uses a chi-square statistic to assess whether genomic regions have higher density of polymor-6

phic sites when compared to a putative neutral genomic background. In contrast, Tajima’s D (Tajima,7

1989) measures the distortion of allele frequencies from the neutral site frequency spectrum (SFS) under8

a model with constant population size. However, these early approaches were not tailored for balancing9

selection and have limited power. Recently, novel and more powerful summary statistics (Siewert and10

Voight, 2017, 2018; Bitarello et al., 2018) and model-based approaches (DeGiorgio et al., 2014; Cheng and11

DeGiorgio, 2019) have been developed to specifically target regions under balancing selection. In general,12

the summary statistics capture deviations of allele frequencies from a putative equilibrium frequency of a13

balanced polymorphism. In particular, the non-central deviation statistic (Bitarello et al., 2018) adopts14

an assigned value as this putative equilibrium frequency, whereas the β and β(2) statistics of Siewert and15

Voight (2017, 2018) use the frequency of the central polymorphic site instead. On the other hand, the T16

statistics of DeGiorgio et al. (2014) and Cheng and DeGiorgio (2019) compare the composite likelihood of17

the data under an explicit coalescent model of long-term balancing selection (Hudson et al., 1987; Hudson18

and Kaplan, 1988) to the composite likelihood under the genome-wide distribution of variation, which is19

taken as neutral.20

Nevertheless, all extant approaches are limited by their sensitivity to the size of the region that the21

statistics are computed on (hereafter referred to as the “window size”). Because the footprints of long-term22

balancing selection are typically narrow (Hudson and Kaplan, 1988; Charlesworth, 2006), small windows23

with fixed size comparable to that of the theoretical footprint based on a genome-wide recombination24

rate estimate are commonly used in practice, especially for summary statistics. However, such small25

fixed window sizes not only lead to increased noise in the estimation of each statistic, but also render26

the statistic incapable of adapting to varying footprint sizes across the genome due to factors such as27

the uneven recombination landscape (Smukowski and Noor, 2011). Though adopting a larger window28

may reduce noise, true signals will likely be overwhelmed by the surrounding neutral regions, diminishing29

method power as shown by Cheng and DeGiorgio (2019). Available model-based approaches (DeGiorgio30

et al., 2014; Cheng and DeGiorgio, 2019) could have been made robust to window sizes if they instead31

adopted the SFS expected under a neutrally-evolving population of constant size as the null hypothesis,32

because their model of balancing selection for the alternative hypothesis converges to this constant-size33

neutral model for large recombination rates. However, this neutral model does not account for demographic34

factors that can impact the genome-wide distribution of allele frequencies, such as population size changes.35

To guard against such demographic influences, the model-based T1 and T2 statistics (DeGiorgio et al., 2014;36

Cheng and DeGiorgio, 2019) employ the genome-wide SFS instead, compromising the robustness against37

large windows. Moreover, Cheng and DeGiorgio (2019) showed that although the power of the T2 statistic38

decays much slower than other approaches as window size increases, the loss of power is still substantial.39

In this article, we describe a set of composite likelihood ratio test statistics that are based on a mixture40

model (Figures 1A and B). This framework of nested models allows for robust and flexible detection of41
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balancing selection that can augment the size of genomic regions considered in each test to best fit the1

data. Dependent on the types of data available, we propose a set of five likelihood ratio test statistics2

termed B2, B2,MAF, B1, B0, and B0,MAF, which respectively accommodate data with substitutions and de-3

rived (B2) or minor (B2,MAF) allele frequency polymorphisms, with substitutions and polymorphisms with4

unknown allele frequency (B1), and with derived (B0) or minor (B0,MAF) allele frequency polymorphisms5

only. We comprehensively evaluated their performances under an array of diverse simulated scenarios,6

including their powers for balancing selection with varying ages, distinct strengths and equilibrium fre-7

quencies, robustness against window sizes, and robustness against confounding factors such as demographic8

history, recombination rate variation, and mutation rate variation. We also compared and discussed their9

performances with other leading approaches—namely HKA, β, β∗, β(2), NCD, T1, and T2. To gauge the10

performance of B statistics on empirical data, we re-examined contemporary human populations in the11

1000 Genomes Project dataset (The 1000 Genomes Project Consortium, 2015) to uncover previously hy-12

pothesized candidates. Furthermore, we performed an exploratory whole-genome scan with B2 on bonobo13

genomic data (Prado-Martinez et al., 2013) to probe for long-term balancing selection in the other close14

relative of humans. We further extended our framework to consider multi-allelic balancing selection, and15

examined the performances of extant methods on cases of multi-locus balancing selection. Lastly, we de-16

veloped the software BalLeRMix (BALancing selection LikElihood Ratio MIXture models) to implement17

these novel tests for the convenience of the scientific community.18

Model Description19

A classical footprint of balancing selection is the increase in the proportion of sites with moderate allele fre-20

quencies that are close to the equilibrium frequency at the balanced locus (Kaplan et al., 1988; Siewert and21

Voight, 2017). Previous modeling attempts (Kaplan et al., 1988; Song and Steinrücken, 2012; DeGiorgio22

et al., 2014; Cheng and DeGiorgio, 2019) primarily focused on delineating the underlying population-genetic23

processes, such as through coalescent or diffusion theory. Though these models are able to capture the24

distortion in the SFS resulting from balancing selection, their intricate mathematical formulations bring25

challenges to further model extensions to more complicated scenarios as well as the associated computa-26

tions. As an alternative, it may be appealing to model the effect of balancing selection through statistical27

approximations of the expected features in the data.28

Based on this idea, for a locus under balancing selection that is maintaining a pair of allelic classes, we29

can approximate the process of observing k0 copies of the selected allele balanced at equilibrium frequency30

x ∈ (0, 1) in n samples, as following a binomial sampling process with n trials and a success rate x. For31

a bi-allelic neutral site that is linked to this selected locus, we assume that the k derived alleles observed32

from the n samples at this neutral site are all on the same haplotype with the k0 selected alleles balanced at33

frequency x. That is, we assume k = k0 and consider the k derived alleles on the neutral site as surrogates34

for the balanced alleles of the allelic class with which they are fixed. Therefore, when these two sites are35

in complete linkage, k can also be considered as binomially distributed with n trials and a success rate x.36

Meanwhile, for a neutral site not linked to this selected locus, we assume that k follows the distribution37

expected by the genome-wide SFS. Taken together, the probability Pn(k) of observing k derived alleles out38
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of n sampled alleles at a neutral site can be written as1

Pn(k) = P[Completely linked to the selected locus] · P[k = k0 out of n binomially sampled with rate x]2

+ P[Not completely linked to the selected locus] · P[k out of n observed in the genome].3
4

Alternatively, this integration of two conditional probabilities can also be viewed as a mixture model, in5

which the two mixing components represent probabilities under balancing selection and neutrality (based on6

the genome-wide empirical distribution), with their respective mixing proportions α and 1−α representing7

the probabilities of being completely linked to the selected locus or not, respectively. To approximate8

α, we chose to consider the exponential decay function, which has been adopted as a proxy for linkage9

disequilibrium (e.g. Nielsen et al., 2005; Moorjani et al., 2011; Loh et al., 2013). To accommodate the10

varying rates of linkage decay, we introduce a free parameter A > 0 for the statistic to optimize over, which11

essentially determines the size of the footprint of balancing selection, with smaller values of A having wider12

footprints than larger values. Hence, for a neutral site d recombination units away from the selected locus,13

the probability that it is linked to the selected locus can be approximated by14

P[Completely linked to the selected locus] = αA(d) = e−Ad.15

Therefore, for a neutral site d recombination units away from the selected locus, we approximate the16

probability mass function for sampling k derived alleles out of n sampled alleles as

fn,x,A(k, d) = αA(d) · hn,x(k) + [1− αA(d)] · gn(k),17

where hn,x(k) denotes the normalized binomial probability of sampling k successes out of n trials with18

success rate x, and gn(k) is the normalized genome-wide SFS denoting the proportion of sites with k19

derived alleles observed out of n sampled alleles. This formulation also applies when k represents the20

number of minor allele copies, for situations in which the ancestral allele cannot be polarized with an21

outgroup. See subsequent subsection for precise definitions of normalized hn,x(k) and gn(k).22

Note that although we constructed this mixture-model framework by combining conditional probabili-23

ties of the derived alleles at a neutral site to be on the same haplotype with one of the two balanced allele24

classes, the interpretation of the mixing weight αA(d) is in effect not constrained to linkage and recombi-25

nation. Other factors that can affect the local SFS, such as the accumulation of low-frequency mutations,26

can be accounted for by incorporating the genome-wide SFS as well.27

In the following subsections, we describe a set of composite likelihood ratio statistics (B2, B2,MAF,28

B1, B0, and B0,MAF) constructed based on this mixture model approach for identifying loci undergoing29

bi-allelic balancing selection. We also extended this framework to consider multi-allelic balancing selection,30

and describe these models in Supplementary Note 1. Note that all the composite likelihood ratio statistics31

considered here assume that balancing selection is acting on a single locus. This set of composite likelihood32

ratio statistics have been implemented in the open-source software package BalLeRMix, which is available33

at https://github.com/bioXiaoheng/BalLeRMix/tree/master/software.34
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Probability distributions given derived allele polymorphisms and substitutions1

For n sampled alleles at an informative site (i.e., polymorphism or substitution), when the ancestral state2

to each site can be confidently assigned, denote the number of derived alleles as k, k = 1, 2, . . . , n. Let3

ξn(k) be the total number of informative sites across the whole-genome with k derived alleles observed out4

of n sampled alleles. The probability of observing such a site is therefore

g(2)n (k) =
ξn(k)∑n
j=1 ξn(j)

.5

When balancing selection maintains an equilibrium frequency of x on the site under selection, the outcomes6

of observing derived alleles on this site (out of n lineages) can be approximated by a binomial distribution7

of n trials with a success probability of x. Following this binomial model, the probability of observing the8

selected site with k observed derived alleles is

h(2)n,x(k) =
Bin(k;n, x)∑n
j=1 Bin(j;n, x)

.9

Note the values of gn(k) and hn,x(k) are conditional on the number of sampled alleles n, and therefore our10

model requires that the sample size be made explicit at each informative site. Permitting the sample size11

to differ across sites is important, as missing genotype calls are often common in empirical studies, with12

sample sizes naturally varying across the genome.13

For an informative site d recombination units away from the presumed site under selection, it can14

either be linked to the derived (with equilibrium frequency x) or ancestral (with equilibrium frequency15

1−x) haplotype under balancing selection, resulting in a bimodal distribution (Figure 1C). Therefore, the16

probability of observing k derived alleles out of n sampled alleles is

f
(2)
n,x,A(k, d) = αA(d)

[
1

2
h(2)n,x(k) +

1

2
h
(2)
n,1−x(k)

]
+
[
1− αA(d)

]
g(2)n (k),17

where αA(d) = exp(−Ad) and where A is a model parameter that determines the size of the genomic18

footprint of balancing selection. When allele frequency information is unavailable at polymorphic sites, the19

probability of observing a polymorphic site (k 6= n) or substitution (k = n) would be

f
(1)
n,x,A(k, d) = f

(2)
n,x,A(n, d)1{k=n} +

[
1− f (2)n,x,A(n, d)

]
1{k 6=n},20

where 1{E} is a dummy variable that takes the value one if the expression E is true, and zero otherwise.21

Similarly, when substitutions are not considered or are missing in the data (i.e., only observe derived22

allele counts k = 1, 2, . . . , n− 1), the two mixing components can be normalized as

g(0)n (k) =
ξn(k)∑n−1
j=1 ξn(j)

,23

and

h(0)n,x(k) =
Bin(k;n, x)∑n−1
j=1 Bin(j;n, x)

.24
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The probability of observing a polymorphic site with k derived alleles out of n sampled alleles is then

f
(0)
n,x,A(k, d) = αA(d)

[
1

2
h(0)n,x(k) +

1

2
h
(0)
n,1−x(k)

]
+
[
1− αA(d)

]
g(0)n (k).1

Probability distributions given minor allele polymorphisms and substitutions2

When alleles cannot be confidently polarized, minor allele frequencies are often used instead. For infor-3

mative sites with n sampled alleles, denote the minor allele count as k, k = 0, 1, . . . , bn/2c, and the total4

number of such sites in the genome as ηn(k). Substitutions are assigned to ηn(0), as the minor allele count5

is zero. The probability of observing a site with k minor alleles out of n sampled alleles in the genome is

g(2,MAF)
n (k) =

ηn(k)∑bn/2c
j=0 ηn(j)

.6

Assume the equilibrium minor allele frequency at the locus undergoing long-term balancing selection7

is x ∈ (0, 0.5]. The probability of observing k minor alleles out of n sampled alleles is then

h(2,MAF)
n,x (k) =

Bin(k;n, x) + Bin(n− k;n, x)1{k 6=n/2}∑n
j=1 Bin(j;n, x)

.8

Hence, for an informative site d recombination units away from the presumed site under selection, the9

probability of observing k minor alleles out of n sampled alleles is

f
(2,MAF)
n,x,A (k, d) = αA(d)h(2,MAF)

n,x (k) + [1− αA(d)] g(2,MAF)
n (k).10

Similarly, when substitutions are not considered or are missing in the data (i.e., only observed minor alleles11

counts k = 1, 2, . . . , bn/2c), the two mixing components can be normalized as

g(0,MAF)
n (k) =

ηn(k)∑bn/2c
j=1 ηn(j)

12

and

h(0,MAF)
n,x (k) =

Bin(k;n, x) + Bin(n− k;n, x)1{k 6=n/2}∑n−1
j=1 Bin(j;n, x)

.13

The probability of observing a polymorphic site with k minor alleles out of n sampled alleles is then

f
(0,MAF)
n,x,A (k, d) = αA(d)h(0,MAF)

n,x (k) + [1− αA(d)] g(0,MAF)
n (k).14

Composite likelihood ratio tests based on the mixture models15

In the preceding subsection, we have provided the marginal probability distributions for the number of16

observed copies of either a derived or a minor allele at an informative site that is a certain distance from17

a locus undergoing bi-allelic balancing selection. Though computation of the full likelihood of balancing18

selection or neutrality considering all closely-neighbored informative sites in the region centered on a par-19

ticular test site is not tractable, we can still gain insight by computing a composite (or pseudo) likelihood20

of balancing selection or neutrality using the informative sites. Specifically, a composite likelihood here21
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would assume independence among observations (i.e., informative sites), multiplying the marginal proba-1

bility distributions for the number of observed derived or minor allele copies at each informative site. By2

maximizing the resulting composite likelihood across our parameter space, we can obtain estimates of the3

optimal parameter values (i.e., x̂ and Â), which confer information about the features of the footprints4

consistent with balancing selection. Despite the incorrect assumption of independent informative sites,5

composite likelihood approaches have been extensively adopted in population-genomic studies, and have6

proved successful in developing powerful methods for detecting diverse modes of natural selection (Kim7

and Stephan, 2002; Kim and Nielsen, 2004; Meiklejohn et al., 2004; Jensen et al., 2005; Nielsen et al.,8

2005; Zhu and Bustamante, 2005; Chen et al., 2010; DeGiorgio et al., 2014; Vy and Kim, 2015; Racimo,9

2016; Huber et al., 2016; DeGiorgio et al., 2016; Lee and Coop, 2017; Cheng and DeGiorgio, 2019; Setter10

et al., 2019). Because composite likelihood approaches strike a balance between model assumptions and11

computational feasibility while still demonstrating excellent classification performance in past studies, we12

seek to define a set of composite likelihood ratio test statistics to detect genomic features consistent with13

balancing selection based on the mixture models.14

Based on the probability distributions described for the five models, for each model X ∈15

{“2”, “2,MAF”, “1”, “0”, “0,MAF”}, the composite likelihood of a genomic region with L informative sites16

under the null hypothesis of neutrality is17

L(X)
0 (n,k) =

L∏
i=1

g(X)
ni

(ki),18

where n = [n1, n2, . . . , nL] and k = [k1, k2, . . . , kL] are the vectors of sample sizes and derived or minor19

allele counts, respectively, at the L informative sites in the genomic region. Recall that the probabilities20

of sampling a certain number of derived or minor alleles under our model depend on the sample sizes at21

informative sites, and because sample sizes often vary across the genome due to missing data in empirical22

studies, we make explicit the sample sizes across all informative sites in the vector n. Similarly, the23

composite likelihood under the alternative hypothesis of model X would be24

L(X)
a (x,A ; n,k,d) =

L∏
i=1

f
(X)
ni,x,A

(ki, di),25

where d = [d1, d2, . . . , dL] is the vector of recombination distances between the test site and each of the L26

informative sites. This likelihood is maximized at27

(x̂, Â) =
arg max

(x,A)
L(X)
a (x,A ; n,k,d).28

Hence, under model X ∈ {“2”, “2,MAF”, “1”, “0”, “0,MAF”}, the log composite likelihood ratio test statis-29

tic for the test site is30

BX = 2
[

lnL(X)
a (x̂, Â ; n,k,d)− lnL(X)

0 (n,k)
]
.31

Note that although log-likelihood ratio test statistics can be considered as following χ2 distributions (of32

which the degree of freedom is the number of free parameters, e.g., two in the full models described above),33

B statistics are a set of composite log-likelihood ratio (CLR) statistics, which do not follow regular χ2
34
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distributions (Varin et al., 2011; Pace et al., 2011). In order for a CLR statistic to approximately follow an1

asymptotic χ2 distribution, it needs to undergo adjustment (Pace et al., 2011) that also yields the effective2

degree of freedom of the asymptotic distribution the adjusted CLR statistic conforms to. This adjustment3

process is based on the set of observations used to compute the CLR, which is different for every test site.4

Because for B statistics, the size of the genomic region considered by each test varies across the genome and5

because the informative sites included in the region are highly correlated, the effective degree of freedom6

also varies across test sites. Therefore, we cannot infer significance from the values of B statistic alone by7

referencing the χ2 distribution.8

Moreover, and probably even more important, is that because the model under the null hypothesis only9

accounts for mean demographic effects based on the genome-wide SFS and not its higher moments (e.g.,10

variance), the resulting p-value obtained from a χ2 distribution after the statistical adjustment would still11

deviate from what is commonly expected when the test rejects neutrality (i.e., neutral evolution under an12

explicit demographic model). We therefore would recommend mass simulation under an appropriate demo-13

graphic model to generate the “null” distribution of B statistics in order to accurately infer the significance14

of each test, with the caveat that such an endeavour would require extensive computational resources due15

to the millions of simulations needed, the lengths of the simulated segments, and the optimization of the B16

statistics on each of these simulated segments. Lastly, in order to infer genome-wide significance, p-values17

need to be corrected for multiple testing, e.g., through Bonferroni correction (Bonferroni, 1935), Simes18

method (Simes, 1986), or Benjamini-Hochberg procedures (Benjamini and Hochberg, 1995).19

Interpretation of estimated A and x parameters20

The likelihood for the alternative model is maximized over the parameters A and x, where, in our formu-21

lation for bi-allelic balancing selection in the previous subsections, x represents the presumed equilibrium22

minor allele frequency, and A decides the rate of exponential decay for the probability of two sites being23

linked, which essentially describes the influence of balancing selection on neutral sites of varying distance24

away from the test site. After optimizing over this parameter space, the parameter values under the opti-25

mal likelihood, Â and x̂, provide information on the nature of detected genomic footprints. The value of26

x̂ should reflect the enriched minor allele frequency across the region. Note that not all mechanisms for27

balancing selection will maintain the balanced alleles at fixed frequencies (Asmussen and Basnayake, 1990;28

Bergland et al., 2014), and so x̂ rather represents the value around which our model presumes the allele29

frequencies across the region are enriched. Therefore, we advise that caution be used when interpreting x̂30

as the equilibrium frequencies without further information about the potential mechanisms that may have31

acted to maintain the polymorphisms.32

Meanwhile, Â describes the rate of the exponential decay of the probability αA(d) = exp(−Ad) of33

the two loci being linked, and should intuitively be informative of the impact of balancing selection on34

nearby neutral sites. The smaller the Â, the wider the footprint would be, and likely the younger the35

balanced polymorphism. However, multi-locus balancing selection can also give rise to wide footprints36

(Barton and Navarro, 2002; Navarro and Barton, 2002; Tennessen, 2018), which could induce small Â37

values. Furthermore, a large A reduces the number of informative sites that yield meaningful likelihood38

ratios, and can thus also occur when data in the examined area fit the alternative model poorly. Therefore,39

we advise only comparing the Â values among regions with reasonably high composite likelihood ratios,40
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and that caution be used when making inferences from these values as they do not map to an explicit1

evolutionary model.2

Results3

Performances on simulated data4

We simulated 50 kilobase (kb) long sequences using SLiM3.2 (Haller and Messer, 2019), under the three-5

species demographic model (Figure S1) inspired by the demographic history of great apes (see Methods),6

and extensively evaluated the performances of all five B statistic variants. We also compared the B7

statistics to the summary statistics β, β∗, HKA, NCD2, and β(2), which are respectively analogues to B0,8

B0,MAF, B1, B2,MAF, and B2, and to the likelihood statistics T1 and T2, which are respectively analogues9

to B1 and B2.10

Robust high power under varying window sizes11

We first examined the robustness of the B statistics to overly large window sizes, under a scenario of12

strong heterozygote advantage (selective coefficient s = 0.01 with dominance coefficient h = 20) acting on13

a mutation that arose 7.5 × 104 generations prior to sampling, with all sites flanking the selected locus14

evolving neutrally. Because BetaScan (Siewert and Voight, 2017, 2018) (which implements the standardized15

and nonstandardized β, β∗, and β(2) statistics, among which we only consider the standardized) operates16

on windows of fixed physical length, we adopted window sizes of 1, 1.5, 2.5, 3, 5, 10, 15, 20, and 25 kb for17

all summary statistics and B statistics. The T statistics were applied on windows with matching expected18

numbers of informative sites. Supplementary Note 3 details the calculation for matching the number of19

informative sites to physical length of a genomic region.20

To reduce potential stochastic fluctuations in the number of true positives when the false positive21

rate is controlled at a low level, we examined the area under a partial curve with no greater than a22

5% false positive rate (hereafter referred to as “partial AUC”). As shown in Figure 2A (see split views23

for separate groups of statistics in Figure S2), under optimal window sizes for most other statistics, all24

variants of B statistics display substantial partial AUCs comparable to that of the respective T statistic25

variant, which has outperformed other equivalent summary statistics in most previous simulation studies26

(DeGiorgio et al., 2014; Siewert and Voight, 2017, 2018; Bitarello et al., 2018; Cheng and DeGiorgio, 2019).27

Most remarkably, as the window size increases, while all other statistics exhibit drastic decays in power,28

the powers of all variants of the B statistic only show minor decreases. In fact, when comparing the29

powers under 25 kb windows against those under optimal window sizes for each statistic, the powers of30

all statistics drop more than twice as much as B1 and B2 (Figure 2B). In comparison with each method’s31

optimal performance, most statistics (except all B statistics and T2, the model-based analog of B2) lose32

more than 80% of their optimal power under the largest window size examined (Figure 2C). Although T233

still retains considerably higher partial AUC compared to all other extant methods, it still decreases to a34

value substantially lower than that of B2. Such robustness of B statistics to large windows is reasonable35

and expected, because the probability distribution of allele frequencies at sites far enough from the test36

site will match the genome-wide SFS, thereby contributing little to the overall likelihood ratio.37
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Among all statistics evaluated, we found that those considering polymorphism data only (i.e., B0 vari-1

ants and β variants) demonstrated relatively poor robustness to increases in window size. This result2

indicates that the detectable footprint of balancing selection in polymorphism data by itself may decay3

faster than other types of information, and that incorporating substitution data may help improve robust-4

ness to large windows.5

Considering that the powers of all B statistics stabilize at a fixed level as the window size increases6

(Figure 2), we permit the B statistics to employ all informative sites on a chromosome. However, to7

reduce computational load, we only consider sites with mixing proportion αA(d) ≥ 10−8 for each value of8

A considered during optimization, which does not create discernible differences in performance from when9

all data are considered (Figure S3). However, to ensure that other methods still display considerable power10

for their comparisons, we applied the summary statistics with their optimal window sizes of one kb, and T11

statistics with numbers of informative sites expected in a one kb window (see Methods), unless otherwise12

stated.13

High power for detecting balancing selection of varying age and selective strength14

Next, we explored the powers of B statistics when the selective strength s, equilibrium frequency (controlled15

by the dominance parameter h), and the age of balancing selection vary. Specifically, we examined scenar-16

ios where the selective coefficients were moderate (s = 0.01, Figures 3A, C, D, and E) or weak (s = 10−3,17

Figure 3B), and when the equilibrium frequency of the minor allele is approximately 0.5 (h = 20, Fig-18

ures 3A and B), 0.4 (h = 3, Figure 3C), 0.3 (h = 1.75, Figure 3D), or 0.2 (h = 1.33, Figure 3E). Across all19

scenarios considered, T2 and β∗ show the highest power for old balancing selection. The best-performing20

B variants, B2 and B2,MAF, display high power as well, and are often comparable to that of the β(2) statis-21

tic. The power of B1 is also similar to HKA, which is its summary statistic analogue. Furthermore, we22

noticed that B statistics exhibit superior power for younger balanced alleles, particularly when balancing23

selection is more recent than 2 × 105 generations, and when the equilibrium frequency does not equal to24

0.5 (Figure S4). For older selected polymorphisms, although several statistics outperform B statistics, it is25

important to point out that all previous methods were provided optimal window sizes, whereas B statistics26

were set to use all sites with considerable αA(d), under which they show lower power than when window27

sizes are optimized (Figures 2A and S2C). This difference in performance between previous methods ap-28

plied with their optimal window sizes and B statistics can also explain the seemingly inferior performance29

of the two B0 variants when compared with the analogous β statistics, as the B0 variants lose more power30

than other B variants when computed on extended windows. When applied with the same window size,31

however, B0 outperforms β by a large margin (Figures 2A and S2C). Nevertheless, these results give us32

confidence that B statistics have generally high power to detect young and old balancing selection, even33

when adopting large windows.34

Robustness to recombination rate variation and elevated mutation rates35

Despite their flexibility in window size and high power for detecting balancing selection, model-based36

methods, such as the T and B statistics, incorporate recombination distances in their inference framework,37

and can therefore be especially susceptible to potential inaccuracies in input recombination maps. Addi-38

tionally, because many approaches for detecting balancing selection aim to identify genomic regions with39
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increased genetic diversity, the elevation of mutation rates is also a common and potent confounding factor1

for detecting balancing selection (Charlesworth, 2006; Siewert and Voight, 2018; Cheng and DeGiorgio,2

2019).3

To test their robustness to inaccurate recombination rates, we applied B and T statistics on simulated4

sequences with uneven recombination maps (102-fold fluctuations in recombination rates; see Methods).5

When the sequences evolve neutrally, neither approach is misled (Figures S5 and S6). When the fluctuation6

in recombination rate is even more drastic (e.g., 104-fold instead of 102), all methods tend to report fewer7

false signals than they would under a uniform map (Figures S7 and S8). This result suggests that the8

misleading effects of inaccurate recombination maps are limited.9

To examine their robustness against unexpected mutation rate variation, we next simulated a 10 kb10

mutational hotspot at the center of the 50 kb sequence with a mutation rate five times higher than original11

and surrounding rate µ, and applied each statistic with parameters derived from the original neutral12

replicates with constant mutation rate µ across the entire sequence. All methods exhibit considerable13

robustness against this regional increase of mutation rate (Figure S9 and S10).14

We further considered an elevated mutation rate of 5µ across the entire 50 kb sequence, and re-examined15

the robustness of each method. As expected, most statistics display substantially inflated proportions of16

false signals (i.e., reported signals of balancing selection from sequences neutrally evolving with 5µmutation17

rate; Figures 4A and D and S11). Among them, the B2 statistic reports the least proportion of false signals,18

followed by the B1 statistic. Meanwhile, at low false positive rates, B2 and B2,MAF statistics report higher19

proportions of false signals than T2, their coalescence model-based analogue, whereas B1 outperformed20

T1. Additionally, all statistics that consider only polymorphism data, namely the B0, B0,MAF, β, and β∗21

statistics, are substantially misled. The β(2) statistic, albeit taking substitutions into account, also displays22

surprisingly high proportions of false signals. Taken together, these results suggest that B statistics are23

reasonably robust against the confounding effect of unexpected high mutation rates, relative to their24

analogous approaches, and that incorporating substitutions and polarized allele frequencies may further25

buttress the robustness.26

With knowledge of their robustness against unexpected mutation rate elevation, we further examined27

the powers of each method to detect balancing selection within sequences evolving with high mutation rates28

when they are correctly informed. That is, T and β statistics are provided the correct population-scaled29

mutation rate and inter-species coalescent time, and all except for B statistics adopt their optimal win-30

dow sizes of one kb (60 informative sites for T statistics). We simulated sequences undergoing balancing31

selection that initiated 250,000 generations ago with a neutral mutation rate of 5µ across the simulated32

segment, and apply summary and T statistics with their optimal window sizes under a mutation rate33

of 5µ. Figure S12 demonstrates that the powers of all methods are substantially higher than for the34

identical scenario with sequences evolving under the original neutral mutation rate µ (compare to Fig-35

ures 3C and S4C). This improved detection ability likely results from the roughly five-fold increase in the36

number of informative sites included within each window. The T statistics display lower areas under their37

receiver operating characteristic curves than their equivalent B statistics (Figure S12A), and the B0,MAF38

and B2,MAF statistics perform substantially worse than their respective derived allele frequency counter-39

parts B0 and B2. Moreover, as with other simulated scenarios, we find that the power of B0,MAF is lower40

than others (Figure S12B). However, when the window size for all summary statistics is expanded from the41
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optimal one kb to a sub-optimal five kb, their powers substantially decrease to levels similar to B0,MAF.1

Robust power under realistic demographic models2

The influence of demographic history was the major motivation for T statistics to adopt the genome-wide3

SFS instead of the coalescence-based constant-size neutral model as the null hypothesis, despite that the4

latter being nested under the alternative model for balancing selection used by the T statistics. This trade-5

off has endowed T statistics with considerable robustness to population size changes (DeGiorgio et al., 2014;6

Cheng and DeGiorgio, 2019), but has also potentially compromised their robustness to large windows, as7

shown in Robust high power under varying window sizes subsection of the Results. For B statistics, however,8

because their null models both reflect the genome-wide SFS and are nested under the alternative models,9

they should exhibit considerable robustness to both oversized windows and demographic changes.10

To evaluate their performances under recent population expansions and bottlenecks, we considered the11

demographic histories of contemporary European humans (Terhorst et al., 2017, CEU; Figure S13A) and12

bonobos (Prado-Martinez et al., 2013, Figure S14A; see details in Methods), respectively. The former have13

been extensively characterized (e.g., Lohmueller et al., 2009; Gravel et al., 2011; Terhorst et al., 2017), and14

therefore can reliably reflect the performance of each method under realistic scenarios. On the other hand,15

because we intend to apply the B statistics on bonobo genomic data, we are also interested in evaluating16

their performance under an inferred bonobo demographic model.17

As previously described, we applied the B statistics with unlimited window sizes, whereas the other18

statistics were provided with smaller window sizes matching the theoretical size for a footprint of long-19

term balancing selection (see Supplementary Note 3). Despite being provided disadvantageous window20

sizes, B statistics still demonstrate comparable to, and often higher power than, current summary statis-21

tic approaches, both under the human (Figure S13) and the bonobo (Figure S14) demographic models.22

Although T2 has higher power than the B statistics, we note that the T statistics were operating with23

optimal window sizes, whereas the window sizes for B statistics are identified across a parameter range.24

When B1 and B2 are applied with identical window sizes as T1 and T2 (Figures S15 and S16), the margins25

between their performances are no longer substantial. Additionally, we noticed that most statistics tend26

to have higher power for sequences evolving under the bonobo demographic history than under that of the27

Europeans (notice that the y-axes in Figures S13 and S14 have different scales).28

Robust power under varying mutation rates across target and outgroup species29

In addition to temporally-varying population sizes, differing mutation rates between closely-related species30

may also affect the performance of the coalescence-based T statistics, as they assume a uniform neutral31

mutation rate along the genealogy relating the lineages from the ingroup and outgroup species. Among32

great apes, for example, accumulating evidence suggests that humans have substantially lower mutation33

rates than other great apes (as reviewed by Scally and Durbin, 2012).34

To examine the behavior of each method when mutation rates of the target and outgroup species differ,35

we simulated a two-species demographic history, with the target and outgroup species respectively evolving36

at neutral rates µ = 1.2 × 10−8 and µ = 2.5 × 10−8 mutations per site per generation (see Methods for37

details). We introduced an adaptive mutation evolving under balancing selection at varying time points38
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prior to sampling along this demographic history, and examined the power of each statistic to detect1

balancing selection across a diverse array of selection parameters (Figure S17).2

Across all six combinations of selection parameters considered, we observe similar trends for each statis-3

tic when compared with simulations under the constant population size (Figure 3) and CEU (Figure S13)4

demographic histories evolving with a constant neutral mutation rate. The T2 statistic performs the best5

when s = 0.01 with h = 20 (Figure S17A), under which the equilibrium frequency is closest to 0.5 and when6

heterozygotes are most advantageous. As the selective advantage hs and equilibrium frequency decrease,7

the margin between the powers of T2 and B2 shrinks, and even reverses for all scenarios with small dom-8

inance h (Figures S17C-F). Furthermore, methods based solely on polymorphism and substitution calls9

(i.e., T1, B1, and HKA) show improvements in power as the equilibrium frequency decreases, and some10

even outperform most of the other statistics (Figures S17D and E). Statistics that ignore substitutions11

(i.e., B0, B0,MAF, β, and β∗), on the other hand, perform especially well for recent balancing selection12

with high heterozygote advantage (large hs; Figures S17A and B). As the balanced alleles reach their13

equilibrium frequencies sooner when the selective advantage of heterozygotes (i.e., hs) is high, sequences14

with mutations of higher hs would have older footprints than those with mutations introduced at the same15

time but with lower hs. In this respect, it is understandable that B0 and β variants outperform others16

only for selection with large hs that are introduced within 150,000 generations prior to sampling.17

Based on this two-species model with diverging mutation rates, we further integrated changes in pop-18

ulation size of the target species in accordance with the demographic history of the CEU (Terhorst et al.,19

2017, Figure S18). From the four sets of selection parameters tested, we found that most methods exhibit20

lower power compared with those under constant population sizes (Figure S17). This result is consistent21

with the lower powers under simulations with a constant mutation rate when the target population size22

evolves under the CEU demographic history (Figure S13) compared with the setting in which the target23

evolves with constant size (Figure 3). Despite their lower powers in general, we still observe similar relative24

performances across statistics, with T1 and B1 exhibiting higher powers when the heterozygote advantage25

hs is small. Moreover, we found that B2,MAF shows superior power to B2.26

Re-examining long-term balancing selection in human populations27

We applied B2 on contemporary European (Europeans in Utah; CEU, Figure S20) and west African28

(Yoruban; YRI, Figure S19) human populations from the 1000 Genomes Project dataset (The 100029

Genomes Project Consortium, 2015) (see Methods) to re-examine the footprints of long-term balancing30

selection, which previous studies (DeGiorgio et al., 2014; Siewert and Voight, 2017) have provided cases for31

reference. The most outstanding candidates in both scans localize in the HLA-D region (human leukocyte32

antigen, also known as major histo-compatibility [MHC] Class II region) (Figures S21 and S22), agreeing33

with previous findings (Sanchez-Mazas, 2007; Leffler et al., 2013; DeGiorgio et al., 2014; Teixeira et al.,34

2015; Siewert and Voight, 2017; Meyer et al., 2017; Bitarello et al., 2018). Within the HLA-D region, the35

B2 scores computed for both populations show extraordinary peaks around HLA-DQ and HLA-DP gene36

clusters, although CEU (Figure S21) scores remarkably higher on HLA-DP genes than YRI (Figure S22).37

Echoing the critical roles of HLA-D genes in adaptive immunity, the gene ERAP2 exhibits extraordinary38

scores in both populations (Figures S23 and S24). This gene has been reported in past studies of balancing39

selection in humans (Andrés et al., 2009, 2010; Bitarello et al., 2018), and Andrés et al. (2010) demon-40
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strated that its splicing variants can alter the level of MHC-I presentation on B cells. Additionally, we1

also observed high B2 scores on CADM2 (Figures S25 and S26) and WFS1 (Figures S27 and S28), on2

which Siewert and Voight (2017) characterized potential non-synonymous mutations segregating in both3

populations.4

In addition to these previously characterized candidates, both scans display extreme B2 scores on5

another two top-ranking regions in the T2 scans by DeGiorgio et al. (2014): the STPG2 gene (formerly6

named C4orf37 ; Figures S29 and S30) and the CCDC169 -SOHLH2 (formerly named C13orf38 -SOHLH2 ;7

Figures S31 and S32) region, with STPG2 particularly more outstanding in the scan of YRI than in CEU.8

Intriguingly, both these genes are associated with gametes. The STPG2 gene encodes sperm-tail PG-rich9

repeat-containing protein 2, which, despite the paucity of literature that describes its function, is found10

in sperm (Uhlén et al., 2015). The high-scoring region on this gene harbors a number of tissue-specific11

eQTLs for its expression, especially in brain and reproductive tissues (GTEx Consortium, 2017). The12

SOHLH2 gene, on the other hand, encodes the transcription factor Spermatogenesis and Oogenesis Specific13

Basic Helix-Loop-Helix-containing protein 2, which plays important roles in both spermatogenesis and14

oogenesis (Toyoda et al., 2009; Suzuki et al., 2012). We observed drastically elevated B2 scores (Figure S31)15

across an extended region upstream of SOHLH2 that covers the naturally occurring CCDC169 -SOHLH216

readthrough transcript (as introduced in RefSeq database; O’Leary et al., 2015). Similar to STPG2, this17

region also features numerous eQTLs for the expression of SOHLH2, especially in endocrine glands, brain,18

and reproductive tissues (GTEx Consortium, 2017).19

Other regions with outstanding peaks shared by both scans include the genes CPE (Fig-20

ures S33 and S34) and MYOM2 (Figures S35 and S36). CPE encodes carboxypeptidase E, a key enzyme21

for synthesizing peptide hormones such as insulin and oxytocin, and its mutant mice strain (Cpe fat) exhibits22

endocrinic disorders such as obesity and infertility (Naggert et al., 1995). MYOM2 encodes endosacromeric23

cytoskeleton M-protein 2, which serves as a structural component of muscle tissues (van der Ven et al.,24

1999). Both genes harbor eQTLs reported by GTEx Consortium (2017) around the high-scoring regions.25

Probing for footprints of balancing selection in bonobo genomes26

We further applied the B2 statistic on the variant calls of 13 bonobos (Prado-Martinez et al., 2013)27

lifted-over to human genome assembly GRCh38/hg38. Only bi-allelic single nucleotide polymorphisms28

(SNPs) were considered, and substitutions were called using bonobo panPan2 reference sequence (Prüfer29

et al., 2012), with the human sequence as the ancestral state. Stringent filters were applied to remove30

repetitive regions and regions with poor mappability (see Methods). We observed many genomic regions31

with outstanding B2 scores (Figure 5), which include both the MHC-DQ and MHC-DP genes and a few32

novel candidates.33

Among the outstanding peaks, the top two cover the MHC-DQA1, MHC-DQB1, MHC-DPA1, MHC-34

DPB1, and MHC-DPB2 genes, which harbor all the top 0.01 percent B2 scores. (Figure 6A). Such35

high scores can be explained both by the elevated proportion of polymorphic sites, 0.299 as compared36

with the genome-wide proportion of 0.237 (Figure 6B; note that genes are labeled based on human hg3837

genome annotations), as well as the enrichment of polymorphic sites with moderate minor allele frequencies38

(Figure 6C). Furthermore, the region exhibits a multimodal SFS, which may correlate to the multiple B239

peaks observed in the region.40
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In addition to the MHC-DQ and MHC-DP genes, KLRD1 also presents prominent B2 scores (Fig-1

ure S37) on its first intron. This gene expresses a natural killer (NK) cell surface antigen, also known as2

CD94, and plays a pivotal role in viral defense. Unlike the region covering MHC-DQ genes, the minor3

allele frequencies at polymorphic sites around the KLRD1 region are clearly enriched near a frequency of4

0.45, instead of the multimodal distribution observed around the MHC-DQ genes. We also found other5

high-scoring regions associated with innate immunity, such as the gene GPNMB (Figure S38), gene LY866

(Figure S39), and the intergenic region between BPIFB4 and BPIFA2 (Figure S40).7

Another interesting candidate is the pain perception gene SCN9A (Figure S41), on which the highest8

scores overlap with the transcript of its anti-sense RNA gene that regulates its expression. Instead of9

enriching toward a single value, the minor allele frequencies at the polymorphic sites across the region are10

dispersed, with at least two modes (approximate minor allele frequencies of 0.25 and 0.40). This finding11

may correlate with the multiple peaks identified around this region, which may be sensible given the large12

number of exons covered. Similarly, the anti-sense RNA gene ARHGEF26-AS1 (Figure S42) harbors13

high B2 scores, with allele frequencies enriched around 0.15 and 0.45. Other notable candidates include14

PDE1A (Figure S43), which encodes a pivotal enzyme in cellular Ca2+- and cyclic nucleotide signaling15

(Michibata et al., 2001) with multiple splicing variants and plays roles in both neurodevelopment (Pekcec16

et al., 2018) and sperm functionality (Lefièvre et al., 2002). A few other genes scoring in the top 0.05%17

are also involved in spermatogenesis or gamete functionality while serving other important functions, such18

as a Ca2+/calmodulin-dependent protein kinase gene CAMK4 (Figure S44; Sikela et al., 1990) and a19

cancer-related gene SUSD2 (Figure S45; Watson et al., 2013; Harichandan et al., 2013).20

Discussion21

In this study, we introduced a novel set of composite likelihood ratio statistics—B2, B2,MAF, B1, B0,22

and B0,MAF—to robustly detect footprints of balancing selection with high power and flexibility. The B23

statistics are based on a mixture model creating a proper nested likelihood ratio test, which helps them24

overcome the common susceptibility to oversized windows held by current methods. We have extensively25

evaluated their performances on simulated data compared with current state-of-the-art methods, and have26

demonstrated the superior properties of the B statistics under various scenarios. We re-examined balanc-27

ing selection in human populations (The 1000 Genomes Project Consortium, 2015), and recovered well-28

established candidates including the HLA-D genes and ERAP2. We further applied B2 onto the genomic29

data of bonobos (Prado-Martinez et al., 2013), and uncovered not only the MHC-DQ and MHC-DP gene30

cluster, but also intriguing candidates that are involved in innate immunity, neuro-sensory development,31

and gamete functionality.32

Evaluating the performance of B statistics through simulations33

In our simulation study, the B statistics showed remarkable robustness to large window sizes, with only34

minor decays in power under oversized windows, whereas other methods exhibited large declines in power.35

Moreover, even when considering all data available as input (i.e., the most disadvantageous window size)36

all variants of B statistics still exhibit comparable power to extant methods and displayed satisfactory37

performance across varying types and strengths of balancing selection. Under scenarios with confounding38
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factors, such as high mutation rate and non-equilibrium demographic history, the B statistics demonstrated1

satisfactory robustness as well.2

The robustness against varying window sizes is of particular interest in this study, not only because it3

ensures high power under large windows, but it also allows the statistics to augment the size of genomic4

regions from which they make meaningful inferences. This flexibility grants a key advantage over previous5

methods that require the window size to be fixed throughout the scan in order to yield comparable results6

across the genome. In particular, because many factors (such as recombination rates) can influence the7

footprint size of balancing selection, it is not ideal to adopt a fixed window size for a whole-genome scan8

based on a uniform population-scaled recombination rate, and B statistics naturally accommodate such9

variability across the genome.10

Admittedly, in practice, as the genomic region considered in the tests expands, non-neutral sites will11

inevitably be included. This indeed violates our assumption that the test locus is surrounded by neutral12

sites only. Nonetheless, because both positive and purifying selection reduce the presentation of sites13

with intermediate frequencies (Tajima, 1989; Braverman et al., 1995; Fay and Wu, 2000; Bamshad and14

Wooding, 2003), their effect on the SFS is in general opposite to the features expected from balancing15

selection. This suggests that including such sites in the window is unlikely to hamper the power to detect16

balancing selection. Meanwhile, when multiple sites in the considered region undergo balancing selection,17

the pattern of polymorphisms across the region will indeed differ from that in regions with a single selected18

locus. We will discuss the effects of such multi-locus balancing selection in the subsequent subsection19

Performance of single-locus methods on multi-locus balancing selection.20

One important consideration is that, so far our simulation study (as well as previous ones by DeGior-21

gio et al., 2014; Bitarello et al., 2018; Siewert and Voight, 2018) only evaluates the method performance22

in the context of single-locus heterozygote advantage. For many other balancing selection mechanisms,23

such as negative frequency-dependent selection (Asmussen and Basnayake, 1990) and periodic environ-24

mental fluctuations (Bergland et al., 2014), a stable equilibrium cannot be guaranteed (Cockerham et al.,25

1972; Asmussen and Feldman, 1977; Ginzburg, 1977). In non-overdominance settings for which particular26

equilibrium frequencies indeed exist, the balanced alleles are still maintained near these fixed frequencies,27

thereby satisfying the general assumptions of the statistical models underlying our B statistics. More-28

over, when such intrinsic equilibrium frequencies do not exist, allele frequencies may still fluctuate around29

some mean values. Even if such mean values are unattainable, there will still persist an enrichment of30

sites with intermediate frequencies, thereby presenting characteristic footprints of balancing selection. We31

therefore believe that our mixture model framework should still have high power to detect footprints of32

non-overdominance balancing selection, and that overall, our results have comprehensively characterized33

the promising performance of the B statistics.34

Confounding effects of mutation rate or recombination rate variation35

In our simulation study, sequences with a central 10 kb mutational hotspot did not mislead methods as36

much as those with the mutation rate elevated across the entire sequence (Figure S9). This result may37

seem counter-intuitive at first, as a smaller region of increased mutation rate may better resemble the38

footprints of long-term balancing selection. However, upon a closer examination of the site frequency39

spectra and proportions of polymorphic sites (Figure S46), sequences with an extended region of high40
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mutation rate exhibit a greater departure in these features under scenarios with no elevated mutation1

rate than for scenarios with a central mutational hotspot. Specifically, these sequences have more sites2

with high derived allele frequencies and a higher proportion of polymorphic sites overall (Figure S46B),3

likely resulting from the recurrent mutation on sites that were originally substitutions. The increase is4

also more profound on sites with high derived allele frequency. For example, the proportions of sites5

with derived allele frequency of 0.96 increased by almost two-fold from approximately 0.00104 to 0.00190,6

and the proportions of sites with derived allele frequency of 0.98 increased by almost three-fold from7

0.00105 to 0.00273. By contrast, the difference in scale between the proportions of polymorphisms (0.1828

versus 0.189) is minor. The larger fold-change in the proportions of high-frequency polymorphisms (i.e.,9

sites with k = n − 1, n − 2, and n − 3 derived alleles) relative to that of substitutions (k = n derived10

alleles) could explain the more profound inflation in power for the statistics relying only on information at11

polymorphic sites. Similarly, after folding the SFS, the large changes in the proportions of low-frequency12

alleles were substantially mitigated, echoing the superior performance of B2,MAF and β relative to their13

unfolded counterparts.14

Another unexpected result from the simulations of elevated mutation rate is the drastic inflation of false15

signals reported by β statistics (Figure 4), which can also be observed in the non-standardized β statistics16

(Figure S47). Although Siewert and Voight (2018) tested their power to detect balancing selection under17

high mutation rate, it was unexplored whether their β statistics would mis-classify highly mutable neutral18

sequences as those undergoing balancing selection, and our results show that they could be easily misled.19

However, we further found that the performances of the standardized β statistics largely improve when20

provided with the correct mutation rate and divergence time (Figure S47B). This result partly confirms the21

superiority of standardized β statistics over the unstandardized ones. It also suggests that β statistics are22

considerably susceptible to the confounding effect of mutation rate elevation, and that their performance23

relies highly on the accuracy of the provided mutation rate. Instead of using a constant mutation rate24

for the entire scan, we propose that providing locally-inferred population-scaled mutation rates θ may25

help improve the robustness of β statistics. Indeed, when we instead estimate θ using the mean pairwise26

sequence difference θ̂π (Tajima, 1983) for each replicate and provided BetaScan the respective inferred27

value as the θ parameter, the standardized statistics no longer report as many false signals (Figure S47C).28

In contrast to mutation rate variation, all statistics are robust to recombination rate variation, with29

B0 and B0,MAF reporting substantially fewer false signals than the others (Figure S5). This robustness30

to recombination rate variation may be explained by the high similarity in the SFS and proportion of31

polymorphic sites to sequences evolving under a uniform recombination rate (Figure S48).32

Effect of multiple testing on sequences with high mutation rates33

BecauseB, T , and β statistics are computed on every informative site, as suggested by Cheng and DeGiorgio34

(2019), multiple-testing can account for some inflation in their powers because sequences with a higher35

mutation rate will have a greater number of informative sites. To evaluate the effect of multiple testing for36

sequences with high mutation rates, we down-sampled the test sites (see Methods) such that the number37

of test scores being computed approximately matches that under the original mutation rate µ. Although38

all statistics show varying levels of improvements in performance (Figures 4B, C, E, and F), some still39

report high proportions of false signals, especially all β statistics and B0,MAF. That is, multiple-testing40
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cannot account for all the factors that drive these statistics to mis-identify features of elevated mutation1

rates as footprints of balancing selection. This result corresponds to the fact that both the SFS and the2

density of polymorphic sites are altered under scenarios with extended regions of elevated mutation rate3

(Figure S46), likely due to recurrent mutation.4

Furthermore, we observed that both before and after down-sampling, the T statistics report fewer5

false signals than their respective B statistic analogues. One potential factor behind their marginally6

superior performance may be that T statistics perform tests on fixed numbers of informative sites, instead7

of genomic regions measured by physical lengths (as did B statistics and the summary statistics). For T8

statistics, the size of the genomic region covered by the same number of informative sites would be much9

narrower under rapidly mutating sequences than in sequences with the original mutation rate. This means10

that the resulting T scores in either scenario are reflective of the levels of variation for sequences with11

drastically different lengths. To account for this factor, we provide B1 and B2 with informative site-based12

windows identical to that of T statistics and re-examined their performances (Figures S49 and S50). After13

matching the windows, B1 and B2 variants in turn display higher robustness than T1 and T2 to elevated14

mutation rates, suggesting that B statistics are at least comparably robust to T statistics. Meanwhile, we15

also matched the window size for B0 variants and β to gauge the effect of adopting large windows on the16

proportions of false signals from B0 variants. When B0 scans the sequences with one kb windows, though17

there is an increase in the resulting number of false signals (Figures S49A and S50C), at a 1% false positive18

rate the proportions of false signals for the two B0 variants only increase by less than 0.1, and are still19

substantially lower than that of β and β∗ (Figures S49B and S50C and D).20

Comparing the B statistics with the T statistics21

Because the T statistics of DeGiorgio et al. (2014) have previously been the only model-based approach for22

the detection of long-term balancing selection from polymorphism data in a single species, the comparisons23

between the model-based B and T approaches is particularly intriguing for researchers with empirical data24

suitable for the application of either. The T statistics are based on an explicit coalescent model (Hudson25

and Kaplan, 1988; Kaplan et al., 1988), and have been shown to have superior power to a number of other26

methods in previous studies (DeGiorgio et al., 2014; Siewert and Voight, 2017, 2018; Bitarello et al., 2018;27

Cheng and DeGiorgio, 2019), consistent with our simulation results. The B statistics, on the other hand,28

employ a mixture model, where the component modeling balancing selection is not based on an explicit29

evolutionary model, but nevertheless shows impressive performance on simulated data, as the shape of the30

distribution of allele frequencies is similar to what might be expected under balancing selection. The often31

superior performances of both approaches over summary statistics is understandable, as both utilize the32

genomic spatial distribution of genetic diversity in their inferences.33

However, within the T statistic framework, the model for the null hypothesis (neutrality) is not nested34

in the alternative hypothesis (balancing selection). Although the T1 and T2 statistics could have adopted35

nested models by employing the standard neutral coalescent as the model for the null hypothesis, doing so36

would increase susceptibility to demographic factors, which can also alter the genome-wide SFS. To better37

account for these factors, DeGiorgio et al. (2014) instead employed the genome-wide distribution of genetic38

variation to compute probabilities under the null hypothesis of neutrality. This explains the substantial39

decay in power for both T statistics as the window size increases (Figures 2 and S2A and B), as well as its40
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robust performance under varying sized demographic models (DeGiorgio et al., 2014; Cheng and DeGiorgio,1

2019, Figures S13 and S14). In contrast to the T statistics, the null model for B statistics (which also2

employs the genome-wide SFS) is nested within the alternative, due to their mixture model framework. This3

feature mitigates the biases introduced by sites far from the test site, while simulataneously accounting for4

demographic factors. Consequently, the B statistics display robust performance under oversized windows5

and realistic demographic models in our simulations (Figures 2, S2, S13, and S14).6

Another advantage of the B statistics over the T statistic approach, especially for B2 compared7

with T2, is the computational load. Because the probability distribution of allele frequencies under8

the Kaplan-Darden-Hudson (Kaplan et al., 1988) model is difficult to compute, the T2 statistic relies9

on previously-generated sets of simulated site frequency spectra over a grid of equilibrium frequencies10

x ∈ {0.05, 0.10, . . . , 0.95} for each distinct sample size n and recombination distance d. Generation of such11

frequency spectra is computationally intensive, and the load increases substantially with the increase in12

sample size, thereby limiting the application of T2 to datasets with larger sample sizes. However, this13

is not a limitation of B2, as the SFS under balancing selection is determined simply as a mixture of the14

given genome-wide distribution of allele frequencies and a statistical distribution with closed-form solutions15

whose computational cost is minor, and only increases linearly with the sample size. Moreover, the rapid16

computation of this spectrum permits a finer grid of equilibrium frequencies x to be interrogated.17

Considering multi-allelic or multi-locus balancing selection18

Both model-based approaches employed by the T and B statistics assume that balancing selection acts19

on a single bi-allelic locus. Whereas this case may be the most intuitive and simplistic scenario to model20

and simulate, many well-established empirical examples of balancing selection—such as the MHC locus21

in animals (Wills, 1991; Hedrick, 2002), the ABO blood group in primates (Saitou and Yamamoto, 1997;22

Fumagalli et al., 2009; Ségurel et al., 2012; Leffler et al., 2013), and the plant self-incompatibility locus23

(Charlesworth et al., 2000)—feature multiple alleles balanced across an extended genomic region. It there-24

fore brings into question how these methods perform on genomic regions evolving under multi-allelic or25

multi-locus balancing selection, and whether current frameworks can be extended to consider these more26

complicated cases of balancing selection.27

Extending mixture models to account for multi-allelic balancing selection28

There exist theoretical models of multi-allelic balancing selection based on the coalescent (Hey, 1991;29

Muirhead and Wakeley, 2009). However, possibly due to computational constraints, such models have not30

been implemented within a likelihood-ratio framework for detecting the footprints they characterize. Here,31

instead of following DeGiorgio et al. (2014) to compute the densities of polymorphisms and substitutions32

or to approximate the SFS using simulations under an explicit coalescent model, our mixture models can33

be readily extended to account for multi-allelic balancing selection at a single locus without the extensive34

computational burden of coalescent-based approaches that integrate selection. Specifically, we consider35

samples with multiple balanced alleles as following multinomial distributions (see Supplementary Note 1),36

and henceforth use the mixture models to approximate the SFS at bi-allelic neutral sites that are linked37

to a selected locus with m ∈ {2, 3, 4, . . .} balanced allelic classes. This extension is also implemented in38

our BalLeRMix software, with the special case of m = 2 reducing to the model introduced in the Model39
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Description section.1

To simulate single-locus multi-allelic balancing selection, we employed SLiM version 3.3, which can2

simultaneously incorporate the four standard nucleotides of DNA, and thus allows these distinct nucleotides3

to coexist at the same site. We introduced two, three, or four distinct mutations with fitness parameters4

s = 0.001 and h = 20 in each simulated replicate 500,000 generations in the past to examine the relative5

performances of T , bi-allelic B, and multi-allelic B statistics. Under this fitness scheme, the equilibrium6

frequencies when two, three, or four alleles are balanced in the population are approximately (1/2, 1/2),7

(1/3, 1/3, 1/3), or (1/4, 1/4, 1/4, 1/4), respectively (see Methods for details). As the number of balanced8

alleles assumed by B statistics (i.e., parameter m) increases, the powers of B statistics barely change9

when two (Figures S51A-C) overdominant mutations are introduced. When more than two overdomiant10

alleles are balanced in the population, it is remarkable that B statistics with m set to three or four11

(Figures S51E and F, respectively) outperform those with m = 2 (Figure S51D). Furthermore, we also12

observe that the optimal equilibrium minor allele frequencies reported by the B statistics match well with13

the true equilibrium frequencies in the simulated replicates (Figure S52).14

To further dissect the relative performances of B statistics (with m = 4), we also applied other statistics15

with their optimal window sizes on these simulated sequences (Figure S53). As the number of balanced16

alleles increases, each statistic demonstrated improvements in their power. Furthermore, the B1, B2 and17

B2,MAF statistics outperform their respective T - or summary-statistic analogs under all three scenarios18

considered.19

Taken together, these results suggest that the multi-allelic B statistics can substantially improve the20

detection power for balancing selection with more than two balanced alleles. Moreover, B statistics with21

larger m parameters, the presumed number of balanced alleles, are downward compatible with population22

samples carrying fewer than m balanced alleles, as the presumed equilibrium minor allele frequencies of23

the extra allelic classes would be optimized close to zero (see Figure S52).24

Extensions to account for overdispersion of equilibrium frequencies25

In addition to the extension to consider multi-allelic balancing selection, our mixture model framework26

also has the potential to be expanded to better account for the overdispersion of the number of copies27

of each balanced alleles. On the one hand, though incorporating the genome-wide SFS partly accounts28

for non-recombination factors, such as accumulation of mutations, that can also influence the distribution29

of derived allele frequencies at both the test site and its surrounding sites, doing so does not account for30

potential increases in the variance of allele frequencies due to such factors. Compared to the binomial31

distribution, for which the variance is fixed for a given of success rate x and trial number n, the beta-32

binomial distribution has an additional parameter that allows the variance to be inflated by varying degrees,33

potentially allowing a better fit to the observed distribution of allele frequencies surrounding a test site.34

On the other hand, some selection mechanisms that lead to balanced polymorphisms do not necessarily35

reach or have stable equilibrium frequencies (Asmussen and Basnayake, 1990; Bergland et al., 2014), but36

instead maintain the frequencies of the balanced alleles within a certain intermediate range. Adopting this37

compound distribution (a binomial distribution with a beta-distributed success rate x) accounts for the38

uncertainty in equilibrium frequencies for these scenarios. Therefore, it is appealing to adopt the beta-39

binomial distribution in place of the binomial distribution in our mixture-model framework to potentially40
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improve the performance of our B statistics. Details of this expanded model can be found in Supplementary1

Note 2.2

To examine the performance of the extended B statistics, we applied them on simulated sequences3

evolving neutrally and under bi-allelic balancing selection, in which selection initiated 500,000 generations4

ago with strength s = 0.001 and dominance h = 20—identical data as analyzed by the original bi-allelic5

B statistics in Figure 3C. When comparing the receiver operating characteristic (ROC) curves of each B6

statistic variant across the binomial and beta-binomial implementations, we found that their performances7

are virtually identical (Figure S54), except that B1 shows substantially lower true positive rates when8

adopting the mixture model with a beta-binomial distribution. To understand why B1 has decreased power9

under this more sophisticated model, we further compared the distributions of replicate-wise maximum10

scores of B statistics under both models (Figure S55). Despite that the beta-binomial B statistics score11

higher than the original ones on sequences with balancing selection, they also tend score higher for neutral12

sequences as well, generally leading to little change in the true positive rate for a given false positive rate.13

However, for B1 in particular, we noticed that its score distribution under neutral simulations is wider for14

the beta-binomial compared to the binomial model, which explains its observed decline in power.15

These results suggests that although B statistics with the beta-binomial distribution account for more16

factors that shape the variability in the data and yield higher composite likelihood values than the ones17

using the binomial distribution, they do not lend considerable gains in power for distinguishing neutral se-18

quences from sequences undergoing balancing selection. Nonetheless, because the additional parameter can19

be informative of the nature of the balancing selection, these extended B statistics can potentially be used20

to obtain a more refined view of candidate regions, after they are identified by the more computationally-21

tractable (on a genome-wide scale) binomial model. We have implemented this extended framework in our22

BalLeRMix package.23

Performance of single-locus methods on multi-locus balancing selection24

Similar to multi-allelic balancing selection, despite previous theoretical work to model or simulate multi-25

locus balancing selection (Navarro and Barton, 2002; Barton and Navarro, 2002; Tennessen, 2018), no26

detection approach has yet been developed accordingly. Meanwhile, neither model-based detection frame-27

work underlying the T statistics nor the B statistics can address these cases without jointly accounting28

for allelic combinations at multiple informative sites as the target of selection. Therefore, without shifting29

the paradigm to consider such site-to-site combinations so as to accurately locate the set of neighboring30

selected loci, one can still examine the performance of extant balancing selection approaches for locating31

genomic regions containing more than one locus under balancing selection.32

To this end, we tested the simplest case with two nearby loci carrying independent overdominant33

alleles (see Methods). To ensure individuals heterozygous at both loci are as advantageous as in the34

single-locus balancing selection simulations with s = 0.001 and h = 20 (Figures S56A and B), we set the35

selective coefficients of both overdominant mutations to s = 0.0005. That is, a two-locus genotype that36

is heterozygous at each of the loci would have fitness approximately equal to 1 + 2hs = 1.2. Despite this37

adjustment, we observed that all statistics show drastic improvements in their powers (Figure S56C and D),38

with the lowest power among them of 0.8 (Figure S56D). This result suggests that multi-locus balancing39

selection can potentially create more-prominent footprints compared with single-locus balancing selection.40
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To further gauge the extent to which the additional selected locus can boost detection power, we simulated1

sequences with two nearby loci each evolving under s = 10−5 and h = 20, such that the selective coefficient2

s is two orders of magnitude smaller than that of the mutations introduced in the sequences evolving under3

single-locus balancing selection (Figures S56A and B). Remarkably, all methods still exhibit substantially4

higher powers for sequences with two nearby loci with weakly-advantageous (s = 10−5) alleles undergoing5

balancing selection (Figures S56E and F).6

The higher powers observed for simulated multi-locus balancing selection scenarios is understandable, as7

Tennessen (2018) demonstrated that two non-interacting neighboring loci tend to reinforce the maintenance8

of polymorphisms when both are independently subjected to balancing selection. However, multi-locus9

balancing selection can also be achieved by epistasis (Barton and Navarro, 2002; Navarro and Barton,10

2002), whereby the fitness effect of one locus is contingent on the allelic state of another locus, and has11

been shown by a growing body of empirical studies to be pervasive in the genome (as reviewed by Shao12

et al., 2008; Lehner, 2011; Mackay, 2014). Though we did not simulate such scenarios in this study,13

because two interacting loci would better maintain polymorphisms at the selected loci than would two14

non-interacting ones (Barton and Navarro, 2002; Navarro and Barton, 2002; Tennessen, 2018), it would15

not be surprising that they would produce even stronger footprints than what we observe here.16

Furthermore, genomic sequences with multiple nearby balanced loci will have more extended footprints17

of balancing selection. With the capability to optimize over window sizes, B statistics should be more18

sensitive to such regions than other approaches applied with small fixed windows. Indeed, B2 substantially19

outperforms T2 (applied with 12 informative sites on either side of a test site) when the two neighboring20

loci under selection are weakly advantageous themselves (Figures S56E and F). The margins between their21

powers still persist even when T statistics adopt windows with 122 informative sites on either side of the22

test site (Figures S57E and F), despite the marginal increases in their powers for two-locus balancing23

selection.24

Our exploratory results not only imply that extant approaches for detecting balancing selection have25

high power when applied to genomic regions carrying multiple balanced loci, but that such power are also26

likely much higher than they would have for single-locus regions. For B statistics in particular, because27

they optimize over window sizes, the gap between their sensitivity for multi-locus balancing selection and28

that for single-locus settings may be more profound than other methods when applied with small windows.29

Our results also support the speculation that top candidates identified in previous scans for balancing30

selection may be more likely to carry more than one functional polymorphic site, as is the case for the31

MHC locus, considering all methods we evaluated show higher powers for multi-locus balancing selection32

than for the single-locus process.33

Application of B2 to empirical data34

In this study, we applied the B2 statistic on both human and bonobo genomic data, and identified sensible35

candidate targets in each species. We first re-examined the CEU and YRI human populations in the36

1000 Genomes Project dataset (The 1000 Genomes Project Consortium, 2015) with B2, which have been37

previously probed for long-term balancing selection in multiple studies (DeGiorgio et al., 2014; Siewert38

and Voight, 2017; Bitarello et al., 2018). We found that top candidates reported by B2 overlap largely39

with previous scans, lending confidence in the power of B statistics to make replicable discoveries. Next,40
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we performed the first model-based scan for footprints of balancing selection on bonobo polymorphism1

data. In addition to the genomic regions previously reported to be under ancient balancing selection in2

humans and chimpanzees (e.g., the MHC-DQ genes at the MHC locus; Leffler et al., 2013; Teixeira et al.,3

2015; Cheng and DeGiorgio, 2019), we have also uncovered novel candidates such as KLRD1 and SCN9A,4

which play roles in pathogen defense and pain perception, respectively. Our results may correspond to5

the unique features and evolutionary history of bonobos, as suggested by accumulating evidence (de Waal,6

1990; Hare et al., 2012; de Groot et al., 2017; Wroblewski et al., 2017; Maibach and Vigilant, 2019) on7

bonobo behavior and physiology.8

Potential balancing selection on gamete-associated genes in humans9

In the scans of human populations, we recovered previously reported candidates STPG2 (formerly C4orf13 )10

and CCDC169 (formerly C13orf38 ), in addition to the HLA-D locus and ERAP2. Neither of the two former11

genes was discussed in previous studies after reporting them as top candidates, probably due to their late12

characterization. Intriguingly, both genes are related to gametogenesis, with recent association and clinical13

studies underscoring their functional importance. In particular, the expression of STPG2 has been detected14

in male tissues, endocrine tissues, as well as the brain (Uhlén et al., 2015). Structural mutations deleting15

this gene have been linked to azoospermia (Yakut et al., 2013) and velocardiofacial syndrome (Wu et al.,16

2019), and association studies of SNPs in this have correlated it with autism (Connolly et al., 2017) and17

preclampsia (Johnson et al., 2012). A recent study even reported footprints of ongoing positive selection18

on a segregating preclampsia-associated SNP in this gene (Arthur, 2018). Note that these authors only19

analyzed the disease-associating variants and applied haplotype-based selection tests, which tend to reveal20

regions with at least one dominant haplotype. The footprints reported by Arthur (2018) can result from21

either recent partial sweeps or balancing selection, with only the latter matching the kilobase-scale size of22

the increased diversity surrounding the region (Figures S29 and S30).23

The conjoined gene CCDC169 -SOHLH2 encodes a read-through transcript of the gene CCDC169 and24

its immediate downstream SOHLH2, a crucial gene for gametogenesis. In addition to its potential to25

initiate the transcription of SOHLH2 on occasions of read-through, CCDC169 has also been found to26

have specific expression in pre-natal brain tissues (Pletikos et al., 2014). More interestingly, the B2 scores27

across this gene do not form a typical peak as seen in many other candidate regions (Figures S31 and S32).28

Instead, we observed a plateau of elevated B2 scores above the region joining the two genes. Furthermore,29

both the mean pairwise sequence difference (π) and T2 with a 22-informative-site-radius window show two30

minor peaks across this region. Considering our results for multi-locus balancing selection (Figure S56),31

such footprints may be reflective of multiple loci undergoing balancing selection, probably interactively via32

epistasis, which can create footprints of extended tracks of elevated genetic diversity (Barton and Navarro,33

2002; Navarro and Barton, 2002).34

Lastly, despite the intriguing functional implications behind our candidates, we are aware that some35

of our candidate regions show worrying signs for artifacts. For example, STPG2 (also a top candidate36

in the scan by DeGiorgio et al., 2014) has low 35-mer sequence uniqueness scores across the whole 40 kb37

region examined, despite surviving the 50-mer mappability filter. The peak linking CCDC169 and SOHLH238

shows overall higher sequence uniqueness than STPG2, but the few regions with relatively lower uniqueness39

co-localize with the peaks reported by π and T2. This co-localization is also observed in the gene CPE,40
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where peak regions with a drop in sequence uniqueness also display lower sequencing depths than other1

regions. Though not all regions with low mappability necessarily yield outstanding scores for balancing2

selection, these signs could still be indicative of erroneous mapping and warrant further investigation and3

caution in interpretation.4

Footprints of balancing selection in bonobos and their implications5

As one of the two sister species to humans, bonobos (initially known as the pygmy chimpanzees; Prüfer6

et al., 2012) have been drawing increasing attention from the genomics community (e.g., Prüfer et al., 2012;7

Prado-Martinez et al., 2013; de Manuel et al., 2016). However, compared with chimpanzees (the other8

sister species), bonobos are relatively understudied, despite their close relationship to humans and unique9

social behaviors. For bonobos, one of their most idiosyncratic traits is their high prevalence of sociosexual10

activities (de Waal, 1990; Kano, 1992; Wrangham, 1993), which serve important non-reproductive functions11

and include frequent same-sex encounters. As a close relative to humans, their female-dominance, low-12

aggression, and hypersexual social behaviors contrast fiercely with those of humans and chimpanzees (Kano,13

1992; Wrangham, 1993). A growing number of recent studies have also characterized the differences in14

physiological responses between bonobos and chimpanzees behind their social behaviors (Heilbronner et al.,15

2008; Hohmann et al., 2009; Wobber et al., 2010; Deschner et al., 2012; Surbeck et al., 2012), yet the16

genetic component underlying their unique behaviors, however, remains largely elusive. From the B2 scan17

of bonobo genomes, we identified a number of interesting top candidates involved in pathogen defense.18

Despite that most of the MHC region was removed by a mappability filter (see Methods), we still observed19

extraordinary signals from the remainder of this region. More specifically, the MHC-DQ and MHC-DP20

genes harbor the highest peaks across the genome (Figures 5 and 6). These genes encode the component21

proteins of MHC-DQ and MHC-DP molecules, which are cell-surface receptors on antigen-presenting cells22

(Ball and Stastny, 1984), and has long been known to be highly polymorphic in great apes (Takahata et al.,23

1992; Prüfer et al., 2012; Teixeira et al., 2015).24

Another immune-related gene, KLRD1, which encodes the cell surfacr antigen CD94, also exhibited25

outstanding B2 scores. The interaction between KLRD1 (CD94) and NKG2 family proteins can either26

inhibit or activate the cytotoxic activity of NK cells (Pende et al., 1997; Cantoni et al., 1998; Masilamani27

et al., 2006), as well as pivot the generation of cell memory in NK cells (Cerwenka and Lanier, 2016).28

Furthermore, KLRD1 (CD94) has been shown to play an important role in combating viral infections such29

as cytomegalovirus (CMV; Cerwenka and Lanier, 2016) and influenza (Bongen et al., 2018) in humans, as30

well as the mousepox virus in mice (Fang et al., 2011). In humans and chimpanzees, KLRD1 is highly31

conserved (Khakoo et al., 2000; Shum et al., 2002). Here, the involvement in viral defense of KLRD132

presents an especially intriguing case for bonobos. Bonobos have been recently shown to harbor reduced33

levels of polymorphism in MHC class I genes (Maibach et al., 2017; Wroblewski et al., 2017), which34

were further predicted to have lower ability to bind with viral peptides when compared with chimpanzees35

(Maibach and Vigilant, 2019). The genes encoding another regulator of MHC class I molecules, the36

Killer cell Immunoglobin-like Receptors (KIR), were also found to have contracted haplotypes in bonobos37

(Rajalingam et al., 2001; Walter, 2014; Wroblewski et al., 2019), with the lineage III KIR genes serving38

reduced functions (Wroblewski et al., 2019). In fact, many studies have pointed out that these reduced39

features are unlikely the natural consequences of demographic factors—even after considering the harsher40
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bottlenecks bonobos have undergone compared with chimpanzees—and speculate that selective sweeps in1

bonobos on these regions (Prüfer et al., 2012; Walter, 2014; Maibach et al., 2017; Wroblewski et al., 2017,2

2019) may have eliminated the diversity in these critical immunity genes. In this light, the polymorphisms3

on KLRD1 may be compensating the reduced diversity in their binding partners in bonobos.4

Several other genes in high-scoring regions are also found to be involved in immunity. For one, the5

highest peak on chromosome 7 encompasses the entire gene GPNMB (Figure S38), with elevated B26

scores particularly on exons. This gene encodes osteoactivin, a transmembrane glycoprotein found on7

osteoclast cells, macrophages, and melanoblast (Loftus et al., 2009; Yu et al., 2016), and is shown to regulate8

proinflammatory responses (Ripoll et al., 2007). Aside from its heavy involvement in cancer (Zhou et al.,9

2012), the protein GPNMB has also been shown to facilitate tissue repair (Li et al., 2010; Rose et al.,10

2010; Hu et al., 2013) as well as influence iris pigmentation (Bächner et al., 2002; Maric et al., 2013).11

Other potential evidence for balancing selection operating on innate immunity-related genes includes the12

high B2 scores observed around the intergenic region between BPIFB4 and BPIFA2 (Figure S40), which13

encode two Bacterialcidal Permeability-Increasing Fold-containing (BPIF) family proteins (Levy, 2000).14

The BPIFA2 genic region is recently shown to harbor many SNPs significantly associated with enteropathy15

(Fujimori et al., 2019), whereas the BPIFB4 gene is better-known by its association with longevity (Villa16

et al., 2015b; Spinetti et al., 2017; Villa et al., 2018), speculated to partly result from its protection of17

vascular functions (Villa et al., 2015a; Puca et al., 2016; Spinelli et al., 2017).18

In addition to pathogen defense, we also found other interesting candidates relating to neurosensory19

and neurodevelopment. One such gene is SCN9A (Figure S41), which encodes NaV1.7, a voltage-gated20

sodium channel, with mutations on the gene associated with various pain disorders (Yang et al., 2004;21

Cox et al., 2006; Reimann et al., 2010). The peak we observe covers the overlapping RNA gene encoding22

its anti-sense transcript, SCN1A-AS1, which regulates the expression of SCN9A (Koenig et al., 2015),23

suggestive of diversified regulation of pain perception in bonobos. A few other candidate genes are also24

involved in neurodevelopment, such as EPHA6 (Das et al., 2016), SUSD2 (Figure S45; Nadjar et al., 2015),25

and HPCAL1 (Tam, 2015).26

Lastly, we noticed that some candidate genes carry multiple distinct functions, and may have been27

undergoing balancing selection due to potential evolutionary conflicts between some of their functions. For28

example, the gene GPNMB plays roles not only in tissue repair (Li et al., 2010), but also in iris pigmentation29

(Bächner et al., 2002). Another candidate, PDE1A gene (Figure S43), encodes a phosphodiesterase that is30

pivotal to Ca2+- and cyclic nucleotide-signaling (Lefièvre et al., 2002). It is expressed in brain, endocrine31

tissues, kidneys, and gonads (Uhlén et al., 2015), and has multiple splicing variants. In fact, the high-32

scoring peak we observed on this gene happens to locate around the exons that are spliced out in some33

variants (Figure S43). Studies have demonstrated the relation of this gene to brain development (Yan et al.,34

1994), mood and cognitive disorders (Xu et al., 2011; Martinez and Gil, 2013; Pekcec et al., 2018; Betolngar35

et al., 2019), and hypertension (Kimura et al., 2017). Meanwhile, the PDE1A protein is also a conserved36

component of mammalian spermatozoa (Lefièvre et al., 2002; Vasta et al., 2005), and is involved in the37

movement of its flagella. Similarly, the gene CAMK4 encodes Ca2+- and calmodulin-dependent kinase38

4, which also plays important roles in both immunity (Koga and Kawakami, 2018) and spermatogenesis39

(Wu et al., 2000). The cancer-related protein Sushi-domain containing 2, encoded by SUSD2 (Watson40

et al., 2013), not only regulates neurite growth in the brain (Nadjar et al., 2015), but can also be used as a41
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marker molecule for human spermatogonial progenitors (Harichandan et al., 2013). Though it is difficult1

to judge for these genes which functions may be subject to selective pressures, they nonetheless indicate2

that pleiotropy can be an important driver of balancing selection.3

Concluding remarks4

Extant methods for detecting long-term balancing selections are constrained by the pliability of their in-5

ferences as a function of genomic window size. In this study, we presented B statistics, a set of composite6

likelihood ratio statistics based on nested mixture models. We have comprehensively evaluated their per-7

formances through simulations and demonstrated their robust high performances over varying window8

sizes in uncovering genomic loci undergoing balancing selection. Moreover, we showed that even when9

applied with the least optimal window sizes, the B statistics still exhibit high power comparable to cur-10

rent methods, which operated under optimal window sizes, in uncovering balancing selection of varying11

age and selection parameters, as well as robust performance under confounding scenarios such as elevated12

mutation rates, variable recombination rates, and population size changes. We re-examined the 100013

Genomes Project YRI and CEU populations with B2 statistics, and have recovered well-characterized14

genes previously-hypothesized to be undergoing long-term balancing selection in humans, such as the15

HLA-D genes, ERAP2, and CSMD2. We also characterized previously-reported top candidates STPG216

and CCDC169-SOHLH2, both of which are related to gametogenesis. We further applied the B2 statis-17

tic on the whole-genome polymorphism data of bonobos, and discovered not only the well-established18

MHC-DQ and MHC-DP genes, but also novel candidates such as KLRD1, PDE1A, SCN9A, and SUSD2 ,19

with functional implications in pathogen defense, neuro-development, as well as gamete functions. More-20

over, we have extended the B statistics to consider multi-allelic balancing selection, with these exten-21

sions demonstrating superior properties to all previous methods for detecting selected loci with more22

than two balanced alleles. We also extended our bi-allelic modeling framework to better account for po-23

tential increases in variability of the allele frequency distribution under balancing selection centered on24

particular equilibrium allele frequencies. Further, we show that all current methods tend to have higher25

powers for two-locus balancing selection than for single-locus processes. Lastly, we have implemented26

these statistics in the open source software BalLeRMix, which, along with other key scripts used in this27

study, can be accessed at https://github.com/bioXiaoheng/BalLeRMix/. We have also released the28

empirical scan results for balancing selection in both humans and bonobos, which can be downloaded at29

http://degiorgiogroup.fau.edu/ballermix.html.30

Methods31

In this section, we discuss sets of simulations used to evaluate the performances of the B statistics relative32

to previously-published state-of-the-art approaches (Hudson et al., 1987; DeGiorgio et al., 2014; Siewert33

and Voight, 2017, 2018; Bitarello et al., 2018). Finally, we describe the application of our B statistics to34

an empirical bonobo dataset (Prado-Martinez et al., 2013).35
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Evaluating methods through simulations1

We employed the forward-time genetic simulator SLiM (version 3.2; Haller and Messer, 2019) to generate2

sequences of 50 kb in length evolving with or without balancing selection. Based on the respective levels3

in humans and other great apes, we assumed a mutation rate of µ = 2.5 × 10−8 per base per generation4

(Nachman and Crowell, 2000), and a recombination rate of r = 10−8 per base per generation (Payseur and5

Nachman, 2000). In scenarios with constant population sizes, we set the diploid effective population size as6

N = 104. To create baseline genetic variation, each replicate simulation was initiated with a burn-in period7

of 10N = 105 generations. To speed up simulations, we applied the scaling parameter λ to the number of8

simulated generations, population size, mutation rate, recombination rate, and selection coefficient, which9

allows for the generation of the same levels of variation with a speed up in computational time by a factor10

λ2. For scenarios based on a model of constant population size, we used λ = 100. For the demographic11

models of European humans and bonobos, we used λ = 20. We simulated 500 replicates for each scenario12

considered, and sampled 50 haploid lineages from the target population and one lineage from the outgroup13

in each simulation for downstream analyses.14

We simulated data from two other diverged species, under the demographic history inspired by that of15

humans, chimpanzees (Kumar et al., 2005), and gorillas (Scally et al., 2012). Specifically, the closer and16

farther outgroups diverged 2.5 × 105 and 4 × 105 generations ago, respectively, which correspond to five17

million and eight million years ago, assuming a generation time of 20 years.18

To evaluate the power of each method to detect balancing selection with varying selective coefficient s,19

dominance coefficient h, and age, for each combination of s and h, we considered 15 time points at which20

the selected allele was introduced, ranging from 5 × 104 to 6.5 × 105 generations prior to sampling with21

time points separated by intervals of 5 × 104 generations. Assuming a generation time of 20 years, these22

time points are equivalent to 1, 2, 3, . . . , 15 million years before sampling. In each scenario, a single selected23

mutation was introduced at the center of each sequence at the assigned time point, and we only considered24

simulations where the introduced allele was not lost.25

Accelerated mutation rate26

To evaluate whether the B statistics are robust to high mutation rates, we applied the methods on simulated27

sequences evolving neutrally along the same demographic history (Figure S1), but instead with a five-28

fold higher mutation rate of 5µ = 1.25 × 10−7 per site per generation. To generate sequences with29

regional increases in mutation rate, we simulated 50 kb sequences with a five-fold higher mutation rate of30

5µ = 1.25× 10−7 per site per generation at the central 10 kb of the sequence, and the surrounding region31

with the original rate µ.32

Recombination rate estimation error33

For evaluating the robustness to erroneous estimation of recombination rates, we simulated sequences34

with uneven recombination maps, and applied the model-based methods with the assumption that the35

recombination rate is uniform. In particular, we divided the 50 kb sequence into 50 regions of one kb each,36

and in turns inflate or deflate the recombination rate of each region by m fold, such that the recombination37

rates of every pair of neighboring regions have a m2-fold difference. We tested m = 10 and m = 100 in38
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this study.1

Demographic history2

To examine the performance of methods under realistic demographic parameters, we considered the demo-3

graphic histories of a European human population (CEU; Terhorst et al., 2017) and of bonobos (Prado-4

Martinez et al., 2013). For the human population, we adopted the history of population size changes inferred5

by SMC++ (Terhorst et al., 2017) that spans 105 generations, assuming a mutation rate of µ = 1.25×10−86

per site per generation (assumed when estimating the CEU demographic history in Terhorst et al., 2017),7

a generation time of 20 years, and a scaling effective size of 104 diploids. To account for recombination8

rate variation, we allowed each simulated replicate to have a uniform recombination rate drawn uniformly9

at random between r = 5 × 10−9 and r = 1.5 × 10−8 per site per generation. We also simulated an10

additional population that split from the human population 2.5 × 105 generations ago, which is identical11

to the outgroup (named O1) in the demographic model depicted in Figure 3A, with an effective size of12

N = 104 diploid individuals.13

For the bonobo population history, we scaled the PSMC history inferred from the genome of individual14

A917 (Dzeeta; sample SRS396202) by Prado-Martinez et al. (2013) with a mutation rate of µ = 2.5 ×15

10−8 per site per generation, identical to the simulations on the three-population demographic history16

(Figure 3A). Because the inferred PSMC model provides a specific ratio of the mutation and recombination17

rates, we set the recombination rate to r = 2.84× 10−9 per site per generation. To be consistent with the18

three-population demographic history, we set the population size prior to 71,640 generations ago, which is19

the maximum time covered by the PSMC inference, to N = 104 diploid individuals, and had the outgroup20

split 2.5× 105 generations ago with the same diploid population size, identical to the outgroup O1 in the21

three-population demographic history (Figure 2A).22

To simulate species with distinct mutation rates, we split the simulation into two stages, with the first23

stage concerning the sequences in the ancestral species up until the two populations diverge five million24

years ago. Upon divergence, two separate SLiM simulations are used to distinguish the mutation rates25

in the target and outgroup populations, and samples are output separately before being integrated in26

subsequent analyses. We set the target species to mutate at a rate of µ = 1.2×10−8 per site per generation27

(Scally and Durbin, 2012) after divergence, and the other species (including the ancestral species) evolving28

with the mutation rate of µ = 2.5 × 10−8 per site per generation (Nachman and Crowell, 2000). The29

recombination rate across all simulations is r = 10−8 per site per generation (Payseur and Nachman,30

2000). For the simulations with constant population sizes, we set the effective size of all populations as31

N = 104 diploid individuals, and adopted the scaling parameter λ = 100. For simulations employing32

realistic demographic histories, we used λ = 20, set the effective population size of the ancestral and33

the outgroup species as N = 104 diploids (Takahata et al., 1995), and the target species following the34

demographic history inferred from the CEU human population (Terhorst et al., 2017) for 105 generations35

prior to sampling. Additionally, we set the generation time of the target species to be 25 years (akin to36

humans; Scally and Durbin, 2012), while for the outgroup and ancestral species we used 20 years (akin37

to non-human great apes; Prado-Martinez et al., 2013). Consequently, the species divergence occurred38

200,000 generations ago for the target species, and 250,000 generations ago for the outgroup.39
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Three- and four-allelic balancing selection at a single site1

To simulate balancing selection on a single site with more than two balanced alleles, we used SLiM3.32

(Haller and Messer, 2019) so that all four nucleotides, instead of binary representations of 0s and 1s,3

can be incorporated into the simulations. We adopted the same three-species demographic history as4

illustrated in Figure S1, and simulated sequences of length 50 kb consisting of randomly-generated strings5

of four nucleotides at the beginning of each replicate, with equal chance of occurrence for each nucleotide.6

We considered the Jukes-Cantor substitution model and set the between-nucleotide mutation rate as µ =7

8.3 × 10−9 per site per generation, such that the total mutation rate (three times the between-nucleotide8

mutation rate) is µ = 2.49 × 10−8 per site per generation—roughly the same as adopted in the bi-allelic9

balancing selection simulations. We also assumed a uniform recombination rate of r = 10−8 per site per10

generation (Payseur and Nachman, 2000). At 500,000 generations before sampling, we introduced two,11

three, or four mutations of distinct nucleotides that have selective coefficient s = 0.001 and dominance12

coefficient h = 20. Note that SLiM considers co-localized mutations of distinct types as if they were at13

different positions, and computes fitness for the individual by multiplying fitness values of each mutation.14

That is, a diploid individual who is heterozygous at a site harboring two distinct selectively advantageous15

mutant alleles with parameters s = 0.001 and h = 20 would have fitness (1 + hs)(1 + hs) = 1.44, whereas16

a homozygote for either selectively advantageous mutation would have fitness 1 + s = 1.001. At the17

completion of the simulation, we sampled 25 diploid individuals uniformly at random from each of the18

sister species (P and O1), and one diploid individual was sampled uniformly at random from species O2,19

with only one haplotype of this individual being considered as the reference sequence. Only bi-allelic sites20

were considered in the downstream analysis.21

Application to empirical data22

Human genomic data from the 1000 Genomes Project23

We obtained variant calls from the 1000 Genomes Project dataset (The 1000 Genomes Project Consortium,24

2015), which were mapped to human reference genome hg19, and extracted the haplotypes for the CEU and25

YRI populations. We used the chimpanzee reference genome panTro5 downloaded from the UCSC Genome26

Browser (Kent et al., 2002; Haeussler et al., 2018) to call ancestral alleles, and only retained mappable27

monomorphic or bi-allelic polymorphic sites based on the variation in the CEU (or YRI) population together28

with the chimpanzee reference genome. For mappable sites not included in the variant call dataset, we29

assumed the site is monomorphic for the hg19 reference genome, and called substitutions accordingly.30

To avoid making inference on potentially problematic regions, we applied the RepeatMasker filter and31

removed segmental duplications, both of which were downloaded from the UCSC Genome Browser (Kent32

et al., 2002; Haeussler et al., 2018). Genomic regions with mappability 50-mer score (Derrien et al.,33

2012) lower than 0.9 were discarded as well. Moreover, we performed one-tailed Fisher’s exact tests for34

Hardy-Weinberg equilibrium (Wigginton et al., 2005) on each polymorphic site and removed those with a35

significant (p < 10−4) excess of heterozygous genotypes.36

We applied B2 to each CEU and YRI dataset separately, assuming the human recombination map of37

the hg19 reference genome (International HapMap Consortium, 2007). We did not fix the window size of38

these scans, and instead permitted B2 to optimize over both free parameters A and x. To better compare39
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our results with previous studies, we also applied the T2 statistic (DeGiorgio et al., 2014) to the same input1

datasets, adopting window sizes of 22 or 100 informative sites on either side of a test informative site. We2

also computed sequence diversity π averaged across each five kb window as a reference.3

For downstream examination of the mappability of candidate regions, we consulted the 35-mer unique-4

ness score (UCSC hg19 database; Kent et al., 2002; Haeussler et al., 2018) averaged across each one kb5

region. Furthermore, we also downloaded the BAM files for each individual in the CEU or YRI population6

and generated per-base read depths with BEDTools 2.26 (Quinlan, 2014). We then computed sample-wide7

mean read depths, their standard deviations, and the number of individuals without coverage for each pop-8

ulation after merging read depths of all samples with BEDTools. These references further aided in flagging9

potentially problematic regions that survived initial filters, as they typically feature lower mappability10

(mean 35-mer uniqueness) or abnormally low or high read depths.11

Bonobo genomic data from the Great Ape Project12

We obtained the genotype calls of 13 bonobos from the Great Ape Project (Prado-Martinez et al., 2013),13

which were originally mapped to human genome assembly NCBI36/hg18. We lifted over the variant calls14

to human genome assembly GRCh38/hg38, so that the bonobo genome assembly panPan2 can be used15

for polarizing the allele frequencies, with the sequence in hg38 considered as the ancestral allele. Only16

genomic regions mappable across hg38 and panPan2 were considered for further analyses. For mappable17

polymorphic sites, we only considered bi-allelic SNPs. For mappable sites without variant calls in bonobo,18

we assumed these sites were monomorphic for the panPan2 reference genome sequence, and called substi-19

tutions based on whether the panPan2 reference allele was different from the hg38 reference allele.20

To circumvent potential artifacts, we performed one-tailed Hardy-Weinberg equilibrium tests on each21

site and removed sites with an excess of heterozygotes (p < 0.01). This p-value was determined by the22

distribution of the p-values of all polymorphic sites across the genome, such that 0.035% of such sites23

are outliers. We also applied the RepeatMasker, segmental duplication, simple repeat, and interrupted24

repeat filters (all downloaded from UCSC Genome Browser) to remove repetitive regions. To assess the25

mappability of each genomic region, we employed the mappability scores (obtained by setting the maximum26

mismatches tolerated to zero; Derrien et al., 2012) of 50-mers. Regions with 50-mer mappability scores27

lower than 0.9 were removed. Because BalLeRMix employs a pre-specified grid of A values to accompany28

the distances d in centi-Morgans (cM), when applying the method, we assumed a uniform recombination29

rate of 10−6 cM per site, which is the approximate recombination rate in humans (Payseur and Nachman,30

2000).31
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Figure 1: Schematic of the mixture model underlying the B statistics. (A) The model for the alternative
hypothesis is a mixture of the distribution of allele frequencies under balancing selection at proportion
αA(d), modeled by a binomial distribution, and the distribution under neutrality at proportion 1−αA(d),
modeled by the genome-wide site frequency spectrum. Here, αA(d) decays as a function of recombination
distance d, and so sites close to (i.e, small d) the putative selected site will be modeled mostly by the
distribution expected under balancing selection, whereas sites far from (i.e., large d) the selected site will
be modeled mostly by the distribution expected under neutrality. (B) Distributions of allele frequencies
at neutral sites (black dots) under the mixture model at varying distances d from the putative selected
site (yellow star). (C) Distributions of allele frequencies from the center 10 kb (0.01 centiMorgan) of the
simulated sequences when balancing selection maintains the equilibrium frequency of x = 0.2, 0.3, 0.4, or
0.5.
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Figure 2: Partial area under the curve (AUC) conditioned on false positive rates (FPRs) less than or equal
to 5% (defined such that the maximal value is 1) as a function of window size measured in kilobases (kb)
for B statistics (varying shades of blue), β statistics (dotted line with varying shades of blue), T2 (orange),
T1 (green), HKA (purple), and NCD2(0.5) (pink), under a scenario in which a mutation undergoing ancient
balancing selection (selective coefficient s = 0.01 and dominance coefficient h = 20) arose 15 million years
ago (assuming a generation time of 20 years). Statistics that consider the same input type share the same
point shape. The dark red dashed line marks the level of partial AUC expected at the y=x line, or the
baseline of randomly choosing between balancing selection and neutrality. (B) The amount of partial AUC
lost, and (C) the proportion of the AUC loss as compared with the optimal value for each statistic when
the window size increased from the optimum to 25 kb (e.g., largest evaluated).
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Figure 3: Ability to detect balancing selection for different heterozygote advantage scenarios. (A) Demo-
graphic model relating the ingroup (P) and outgroup (O2) populations, with one sample from O2 used as
the outgroup sequence. (B-F) Powers at a 1% false positive rate (FPR) for each statistic as a function of
age of the allele undergoing balancing selection for different selection (s) and dominance (h) coefficients.
The scenarios considered are (B) s = 0.01 with h = 20, (C) s = 0.001 with h = 20, (D) s = 0.01 with
h = 3, (E) s = 0.01 with h = 1.75, and (F) s = 0.01 with h = 1.33. Note that the equilibrium frequencies
for panels D, E, and F are 0.4, 0.3, and 0.2, respectively.
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Figure 4: Robustness of each statistic evaluated when the mutation rate is elevated five-fold across the
entire genomic region. (A-C) Proportions of false signals as a function of false positive rate (FPR) when
(A) all test sites were considered to compute proportions of false signals and when (B, C) the number of test
sites were down-sampled to match the number of sites expected on sequences with the original mutation
rate µ. In panel B, five informative sites flanking either side of a test site considered were skipped (“sparse”
down-sampling), whereas in panel C only the first 1200 informative sites were considered for calculating T ,
B2, and B1 statistics, and the first 240 polymorphic sites were considered for B0 and β statistics (“dense”
down-sampling). (D-F) Proportions of false signals at a 1% FPR for each statistic for (D) all test sites, (E)
sparse down-sampling, and (F) dense down-sampling. Bars for all B statistics are bordered by black lines,
and all β statistics are bordered by gray lines in panels D-F. HKA and NCD2(0.5) are applied with a fixed
step size, and are therefore not considered when down-sampling in panels B, C, E, and F. In all panels,
the false positive rate was based on neutral simulations with the original mutation rate µ = 2.5× 10−8 per
site per generation, and the proportion of false signals was based on neutral simulations with the elevated
mutation rate of 5µ. We define a false signal as a simulated replicate that has a higher score than the score
associated with a given false positive rate cutoff.
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Figure 5: Manhattan plot displaying B2 scores across the 22 human autosomes for which the bonobo
genomic data were mapped, with the candidates scoring in the top 0.05 percent annotated. RNA genes
are annotated with smaller fonts. Horizontal dotted lines represent cutoff scores for the top 0.1, 0.05, and
0.01 percent across the genome. Peaks higher than 0.05 percent cutoff but without annotations do not
have neighboring protein-coding regions within a 250 kb radius.
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Figure 6: Evidence for balancing selection on MHC-DQ and MHC-DP genes in bonobos. Note that the
plotted gene names are based on the annotations of human hg38 reference genome. (A) B2 scores across
the genomic region on chromosome 6 surrounding the MHC-DQ and MHC-DP genes. The gray bars
directly under the B2 scores represent the masked regions, as well as the features in these regions. The
darker the shade, the greater number of types of repetitive sequences (e.g., RepeatMasker mask, segmental
duplication, simple repeats, or interrupted repeats) overlapping the region. Vertical gray bars below display
the estimated equilibrium minor allele frequency x̂ for each maximum likelihood ratio B2, and the black
line traces the value for the respective inferred footprint size log10(Â). (B) Proportion of informative sites
that are polymorphic in the 800 kb region centered on the peak compared with the whole-genome average.
(C) Minor allele frequency distribution in the 500 kb region centered on the peak compared with the
whole-genome average.
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