

Genetic diversity's twin aspects: what sequence (or expression, etc),

and how many of each sequence? New tricks for combining these W (Bill) Sherwin. EERC, BEES, UNSW-Sydney. W.Sherwin@unsw.edu.au

TAGC-PEQG

Genetic diversity

crucial to Evolution & Conservation **Differences of:**

Frequency P_i

Function (expression) diff: Transcriptomes of two major pest flies:

- Sympatric, interfertile
- Kept apart by time-of-day for mating.
- Only one is invasive

+/OR Function % nucleotide Diff. HOW To Expression Diff. Combine These?

WITHOUT counterintuitive effects, eg:

- **Negative diversities!**
- Similar diversity despite different function
- **Unwanted Dependencies** EG % variation between-pop (AMOVA, Fst)
 - Decreases if the variation within-location increases
 - Even if the populations still share no sequences!

2 Functional Diversity Solution: **Two Complementary Profiles**

Frequency: *q*-**Profile** (low *q* emphasizes rare alleles)

q = 0	q = 1	q = 2
Number of alleles, S	Shannon Entropy/Info	Heterozygosity / Nt diversity etc
${}^{0}H = 1 - S$	$^{1}H = -\Sigma p_{i} \log p_{i}$	$^{2}H = 1 - \Sigma p_{i}^{2}$
$^{O}D = S$	$^{1}D = e^{(1}H)$	$^{2}D = 1/(1-^{2}H)$ -

 $p_i = Proportion$ ("Frequency") of allele "i"

Function: tau-profile (novel):

(low *t* emphasizes finer distinctions Chao et al '19)

.- d_{ii} functional distance (expression level, base pairs...)

d _{ij}	Seq 1	Seq 2	Seq 3	Seq 4
Seq 1	0	2	8	8
Seq 2	-	0	8	8
Seq 3		-	0	6

Profile shows *effective* numbers of molecular variants that are: - equally-frequent AND

equally-functionally distinct

.- Tau-cutoff: if $d_{ii} \ge \tau$, variants treated as functionally distinct .- Use all possible *t*-cutoffs, to give *t*-profile '

Video, Software, Refs....

- Chao et '19 *Ecol. Monogr.* 10.1002/ecm.1343
- Sherwin et '17. Trends Ecol. Evol. 32: 948 (with video)
- Raphael et '19. Insect Molecular Biology. 10.1111/imb.12583
- O'Reilly et '18 Conserv. Genet. Res. 10.1007/s12686-018-1079-z
- chao.shinyapps.io/SpadeR
- georges.biomatix.org/dartR

Thanks

Collaborators, Students \$\$: Academia Sinica Taiwan, EU 'Entropy and Biology': New section of 'Entropy' journal **Contributions welcome** www.mdpi.com/journal/entropy/sections/entropy_biology

Best discrimination:

- usually with q=1 & mean Tau.

No Counterintuitive effects

<u>Hierarchy</u> possible: - Within location **(**α**)** - Between locations (β) - Over all locations (y)