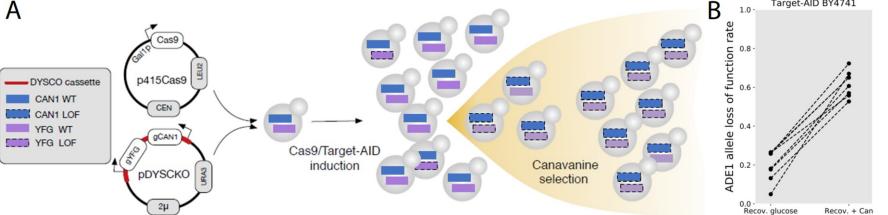


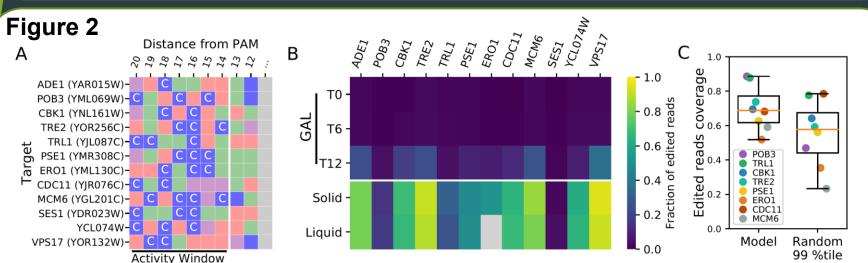
Philippe C Després^{1,2}, Alexandre K Dubé^{1,2}, Motoaki Seki³, Nozomu Yachie³ and Christian R Landry^{1,2}

Département de biochimie, bio-informatique et microbiologie, Université Laval, 2. Département de biologie, Université Laval,
Synthetic Biology, Division, Research Center for Advanced Science and Technology, The University of Tokyo

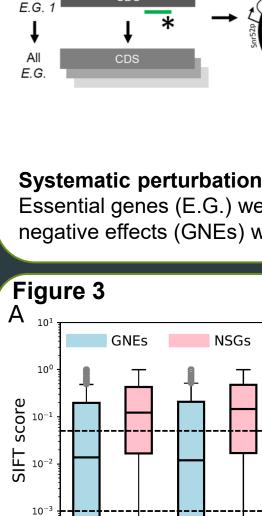
Figure 1


Highlights

- 1) A genome-wide base editing screen identifies sensitive sites in yeast essential genes
- 2) gRNA base editing outcomes are predicted with a model validated by deep sequencing data
- 3) Screen hits are enriched in mutations predicted to be deleterious

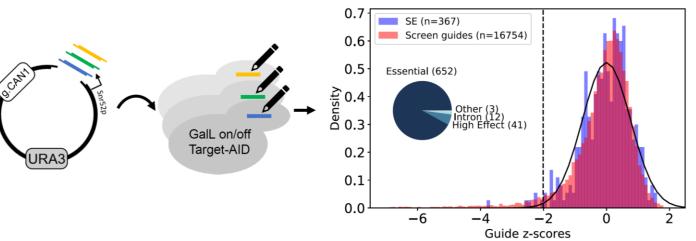

Takeaway: Base editing allows efficient screening of many mutations in many genes in a single tube

Background


Base editors derived from CRISPR-Cas9 such as Target-AID¹ allow targeted mutagenesis without DNA segment replacement. They offer new opportunities for genome-wide perturbation studies and systems biology.

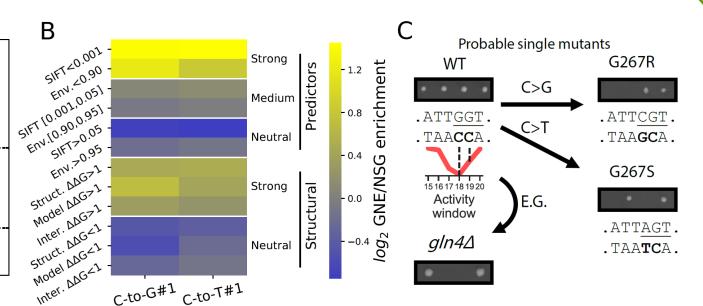
Base editing using co-selection in yeast. A) Target-AID base editing (Adapted from Nishida et al¹ and Wikipedia). Mutation outcome depends on DNA repair pathways. B) Co-selection for high efficiency base editing in yeast². Screening for edited cells using canavanine can increase two to three-fold mutagenesis efficiency of the target of interest (YFG).

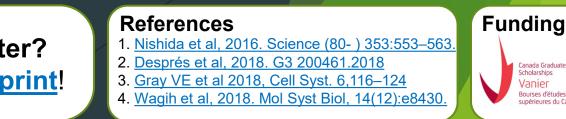
The Target-AID base editor allows precise and predictable editing of genomic targets. A) A set of gRNAs targeting different yeast protein coding genes. B) Editing frequency of targets through the editing process as measured by next-generation sequencing. C) A parsimonious model based on previous studies^{1,2} identifies the most likely outcomes of Target-AID mutagenesis in yeast.


GNEs are enriched for muta with non-significant effect (NS effect prediction measuremen

GNEs are enriched for mutations predicted to be deleterious. A) SIFT score distribution of GNEs and gRNAs with non-significant effect (NSGs) mutation outcomes. B) Enrichment folds of GNEs over NSGs for different variant effect prediction measurements. Envision scores (Env.) from Gray et al³, SIFT and structural data from Wagih et al⁴. C) Validation study using classical genetics of a GNE targeting Glycine 267 from the tRNA-synthetase *GLN4*.

Enjoyed the poster? Check out the preprint!




CIHR IRSC

Systematic perturbation of essential genes identify sensitive sites across the genome.

Essential genes (E.G.) were scanned for sites that could be edited by Target-AID. 708 gRNAs with negative effects (GNEs) were identified using gRNAs with synthesis errors (SE) as controls.

