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Summary
To enable demographic history inference in inbred 
species, we implemented a model for the site 
frequency spectrum with inbreeding into the 
inference software dadi. Using simulations, we 
showed that our approach is unbiased and 
powerful. We then applied our method to 
American pumas (not presented) and 
domesticated cabbage. Our results show that 
inbreeding can have a strong effect on 
demographic inference, particularly for 
parameters involving changes in population size. 
Given the importance of these estimates for 
informing practices in conservation, agriculture, 
and elsewhere, our method provides an important 
advancement for accurately estimating 
demographic histories. 

Model
The site-frequency-spectrum (SFS) summarizes 
genetic variation within and between populations 
using the observed number of SNPs at any given 
sample frequency. Recent inbreeding increases 
homozygosity, increasing even entries of the SFS 
and decreasing odd entries. 

Balding and Nichols (1995, 1997) proposed a 
probability model for inbreeding based on the 
beta-binomial distribution. Here g ∈ 0,1,2 is the 
individual genotype, p is the population allele 
frequency and F is the inbreeding coefficient.

 

The expected number of derived alleles D in a 
sample of n individuals is then a sum over all 
possible ways generating genotypes that sum to 
D=d.

 

Availability
Published in Molecular Biology and Evolution:  

https://doi.org/10.1093/molbev/msaa042 

Implemented in dadi:  
https://bitbucket.org/gutenkunstlab/dadi 

Validation

To validate our approach, we compared with forward simulations 
in SLiM 3 (Haller and Messer 2019). We found good qualitative 
agreement in the spectra and good quantitative agreement in 
inferred parameter values. 
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Application to Cabbage
We applied our approach to data from domesticated cabbage (B. oleracea 
var. capitata, Chen et al. 2016a,b), which is thought to have been 
domesticated roughly 500 years ago. Models without inbreeding 
qualitatively failed to the fit the SFS and inferred an implausible 
domestication time and population crash. Including inbreeding fixed both 
issues. 

Discussion
Our model of recent inbreeding performs well in simulation. Application to 
empirical data shows that neglecting inbreeding can severely bias 
demographic history inference. Note that our model is for recent inbreeding. 
Ancient inbreeding can be accounted for by scaling the effective population 
size based on the inbreeding coefficient (Charlesworth 2003). 
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pected genotype frequencies under Hardy Weinberg equilibrium (Wright 1951). Here we use an127

alternative model that captures the fact that genotypes within populations will be correlated due128

to inbreeding, pushing the distribution of genotypes towards homozygotes. To capture this cor-129

relation among genotypes, Balding and Nichols (1995, 1997) proposed a probability model to in-130

corporate inbreeding using a beta-binomial distribution. Under this model, individual genotypes131

are a random variable, Gi 2 {0, 1, 2}, for the number of copies of the derived allele in individual132

i (i = 1, . . . , n) such that Pr(Gi = g) at an individual locus with allele frequency p 2 (0, 1) and133

population inbreeding coefficient F 2 (0, 1) is beta-binomial with the following form:134
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introduces the overdispersion of probability towards homozygous genotypes137

that is expected as inbreeding increases (Balding and Nichols 1995, 1997).138

To get the expected SFS, we need to be able to model the total number of derived alleles139

sampled in the population, which is the sum across the genotypes of all individuals. Given a140

sample of n diploid individuals (2n chromosomes), we use the random variable D 2 {0, . . . , 2n} to141

denote this quantity. The probability mass function for D is an n-fold convolution of beta-binomial142

distributions, which does not have a simple distributional form. However, we can obtain the143

probability mass function by considering all possible combinations of the probability of drawing144

D = d alleles across n beta-binomial distributions, giving us a closed form expression for the145
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Breaking this down, we can think of it as enumerating all possible ways to generate genotypes147

in n individuals such that they sum to d, times the beta-binomial probability of sampling each148

genotype. More specifically, let pn(d) be an array of integer partitions with n entries that sum149

to d such that all entries in the partition are 0, 1, or 2 (corresponding to the possible genotype150

values). For example, the partitions defined by p5(4) are [2, 2, 0, 0, 0], [2, 1, 1, 0, 0], and [1, 1, 1, 1, 0].151

Then for each of these partitions, we use the multinomial coefficient n!
n0! n1! n2! , with n0, n1, and n2152

corresponding to the number of partition entries equal to 0, 1, and 2, respectively, to account for all153

possible rearrangements of the partition entries. Next, we multiply the beta-binomial probability154
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Table 2: Parameter estimates for B. oleracea var. capitata from demographic models estimated both with and
without inbreeding. 95% confidence intervals are given in parentheses and were estimated using a step size
of e = 10�2 for numerical differentiation. Population sizes are given in number of individuals and times
are given in years. Parameters estimated at the upper/lower bound of the given search space are marked
with an asterisk (*).

Parameter Estimate With Inbreeding Estimate Without Inbreeding

NA 17,500 (16,900–18,100) 19,100 (18,500–19,800)

N1 31,600 (28,900–34,700) 123,000 (80,400–190,000)

N2 215,000 (4,910–9,370,000) 592 (547–641)

T1 16,600 (12,900–21,200) 5,870 (5,200–6,620)

T2 322 (94.2–1,097) 38.3 (32.5–45.1)*

F 0.578 (0.557–0.599) –

the inbreeding model inferred an ancestral population size of 17,500 individuals, which expanded324

to a size of 31,600 individuals ⇠17,000 years ago. This population then experienced an even larger325

expansion to a size of 215,000 individuals 322 years ago. The model with inbreeding inferred F326

to be 0.578, showing that inbreeding in these cabbage samples is fairly high. The log-likelihoods327

for the model with and without inbreeding were �4281.145 and �24330.403, respectively, and the328

Godambe-adjusted likelihood ratio statistic was 127.562 (p-value = ⇠0.0; Coffman et al. 2015). Fig-329

ure 4 also shows the observed and predicted SFS for each model plus their residuals. The residual330

plots clearly show that the model with inbreeding is able to capture more of the ‘zig-zagging’ pat-331

tern of the lower frequency variants than the model without inbreeding, demonstrating its overall332

better fit. Uncertainty estimates were again typically more stable across step sizes for the model333

with inbreeding.334

Figure 4: The observed site frequency spectrum for Brassica oleracea var. capitata, along with the model fit
(red) and residuals (bottom panels), for models with inbreeding (middle) and without inbreeding (right).
On the left is a cartoon of the proposed demographic model with parameters labeled.
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Figure 2: (a) Estimates of F from data generated with SLiM for the bottleneck and growth model (lower)
plus an illustration of the model (upper). In this model, NA is the ancestral population size, n0 is the size
of the bottleneck (proportion of NA remaining after population reduction), and T is the amount of time for
the population to recover back to a size of NA. (b) Estimates of F from data generated with SLiM for the
divergence with one-way migration model (lower) plus an illustration of the model (upper). NA in this
model is the same as the bottleneck model, n2 is the size of the diverging population (again a proportion of
NA), T is the divergence time between populations, and M21 is the one-way migration rate of individuals
from population one into population two.

mographic inference have already been explored (Robinson et al. 2014), we instead focused on the233

effect of masking rare variants under increasing levels of inbreeding. For the bottleneck model234

we masked the singleton and doubleton entries of the 1D-SFS, and for the divergence model we235

masked the bottom corner of the 2D-SFS (ie singletons, doubletons, and their combinations across236

both populations). We then used the same range of parameters as in the previous simulations to237

see how much masking affected our inferences.238

For the bottleneck and growth model, data masking had a small but noticeable effect on239

parameter estimation. The bottleneck size was estimated with less accuracy compared to when240

inbreeding was included (RMSD = 0.0296) and estimates of recovery time also had higher error241

(RMSD = 0.0218), typically in the direction of underestimation (Figure S11). The effect of mask-242

ing was more pronounced in the divergence model (Figure S12), particularly for the migration243

parameter, where the amount of gene flow was almost always underestimated across all param-244
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Figure 1: Comparison of expected spectra for F = 0.5, 0.75, and 0.9 between ∂a∂i (blue) and SLiM (green)
for the equilibrium and bottleneck+growth models.

The observed SFS can be obtained from empirical data by tabulating derived SNP frequen-108

cies across sampled populations to generate the P-dimensional array described above. When a109

derived allele cannot be determined, we can instead record the frequency of the minor allele, ef-110

fectively “folding” the spectrum in half by only considering the variants with frequency less than111

0.5. Demographic inference can then be conducted by comparing the observed SFS with the SFS112

obtained from a demographic model (Sawyer and Hartl 1992).113

Given the P-dimensional distribution of allele frequencies obtained from a given demographic114

model, f, the expected SFS can be obtained by calculating the probability of drawing d1, . . . , dP115

derived alleles while integrating across the distribution of allele frequencies in the populations.116

Within each population, the number of derived alleles has a binomial distribution under pan-117

mixia. We then integrate across all possible allele frequencies, weighting the binomial probability118

of drawing di derived alleles by the density determined by f within population i. Taking this P-119

dimensional integral across the weighted product of binomial probabilities gives us the expression120

for the joint expected SFS:121

E[d1, . . . , dP] =
Z 1

0
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The Expected SFS with Inbreeding122

Through its use of binomial sampling, the preceding derivation for the expected SFS makes the123

assumption that matings within populations are random. When inbreeding has occurred, individ-124
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Figure 2: (a) Estimates of F from data generated with SLiM for the bottleneck and growth model (lower)
plus an illustration of the model (upper). In this model, NA is the ancestral population size, n0 is the size
of the bottleneck (proportion of NA remaining after population reduction), and T is the amount of time for
the population to recover back to a size of NA. (b) Estimates of F from data generated with SLiM for the
divergence with one-way migration model (lower) plus an illustration of the model (upper). NA in this
model is the same as the bottleneck model, n2 is the size of the diverging population (again a proportion of
NA), T is the divergence time between populations, and M21 is the one-way migration rate of individuals
from population one into population two.

mographic inference have already been explored (Robinson et al. 2014), we instead focused on the233

effect of masking rare variants under increasing levels of inbreeding. For the bottleneck model234

we masked the singleton and doubleton entries of the 1D-SFS, and for the divergence model we235

masked the bottom corner of the 2D-SFS (ie singletons, doubletons, and their combinations across236

both populations). We then used the same range of parameters as in the previous simulations to237

see how much masking affected our inferences.238

For the bottleneck and growth model, data masking had a small but noticeable effect on239

parameter estimation. The bottleneck size was estimated with less accuracy compared to when240

inbreeding was included (RMSD = 0.0296) and estimates of recovery time also had higher error241

(RMSD = 0.0218), typically in the direction of underestimation (Figure S11). The effect of mask-242

ing was more pronounced in the divergence model (Figure S12), particularly for the migration243

parameter, where the amount of gene flow was almost always underestimated across all param-244
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