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Sexual reproduction is a risky process can lead to DNA damage or
decrease a genome’s chance of survival, as only half of an organism’s
genome Iis passed onto its progeny. Thus, organisms who sexually
reproduce have evolved highly regulated signaling mechanisms to ensure
reproduction and mating proceed smoothly. Mating-type switching is an
example of regulated sexual reproduction found in many yeast species. In
budding yeast, two mating-types, a and a mate with each other. When a
yeast cell has no viable mating partner, it performs mitosis to form two
identical cells. The mother cell then goes through a chromosomal inversion
event and switches to the opposite mating-type, so the mother and daughter
cell can mate. This inversion is extremely risky and can result in DNA
damage or cell death. To mitigate risk, mating-type switching is regulated by
multiple signal cascades to prevent something from going awry during
switching. The transcription factor STE72 has been identified as an
important agent in the regulation of these signal cascades, and is necessary
and sufficient to induce switching. Our research focuses on switching in the
yeast Ogataea polymorpha, which is distantly related to the model yeast,
Saccharomyces cerevisiae. In this research, we Iinvestigated the
downstream pathway of STE72-mediated mating-type switching in O.
polymorpha. We looked for putative long non-coding (Inc)RNA (non-coding
RNAs longer than 200 base pairs) molecules involved in the regulation of the
switching signaling cascade. We induced switching in a cells and performed
RNA-seq analysis to identify INcRNAs regulated by STE712. We created a
bioinformatic pipeline to identify novel transcripts upregulated by STE712. We
found 5 putative INcRNAs in the set of novel transcripts that are upregulated
by STE12 and may have a role in switching regulation. In the future, we
need to investigate the functions of the 5 INcCRNAs to see if they work in the
signal response cascade that regulates mating-type switching.

O. polymorpha Mating-Type Switching Through
Genomic Reorientation of the MAT Locus

Hypothesis: Long Non-coding RNAs regulate Validation of Coding Sequences

the progression of Mating-Type Switching
following STE12 overexpression.
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Fig. 3. Overexpressing STE12 Induces Mating-Type Switching in O.
polymorpha. Overexpression of STE12 was induced using a methanol-inducible
promoter, which led to switching. DNA and RNA were extracted from the cells.
PCR was run on the DNA to determine MAT locus orientation. RNA was
sequenced using an lllumina NovaSeq at the University of Colorado Anschutz
Medical Campus Genomics and Microarray Core Facility.
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Upregulated by STE72 in Total RNA-seq
Table 1. STE12 Upregulates Mating Genes.
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Gene Name  Function Q‘? Q Q?. Qv. 46
MFalpha1 a factor pheromone 8.53 4.03
BAR1 protease that cleaves o factor 6.09 6.75
FUS3 MAP kinase involved in mating 5.84 5.71
MFa a pheromone 5.59 5.56
GPA1 a subunit pheromone receptors 5.52 6.23
STES3 receptor for a-factor 5.36 5.74
STE12 trans. factor, pheromone response 5.00 5.88
CDS:62574 unknown 5.00 4.36
OPOL 16726 prenylcysteine lyase 4.62 4.43
FAR1 cell cycle arrest to pheromones 4.27 4.30

STE12 Upregulates Five Potential
Long-Non Coding RNAs

Table 2. The Total RNA-Seq Dataset Contains 7 STE12
Regulated Novel Transcripts.

Transcript Name Log, (Fold Change) Length Coding Potential Score Coding or Non-Coding

3.51 3096 -1.03047
MSTRG.74 2.77 17772 6.8913 Coding
2.2 4869 -1.01701 | |
MSTRG.2246 1.97 12190 3.76732 Coding
1.73 4250 -0.274634 |
1.57 1917 -1.04476
1.54 952066 -32.5407

*Blue Denotes Non-Coding Transcripts

Future Directions

* |dentify IncRNAs Secondary Structures

* |dentify Targets of IncRNAs

 Analyze cis versus trans gene regulation
by INCRNASs

Knockdown or knockout IncRNAs and
analyze differential expression of
regulated genes.
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