

Polyploid Cell Cycles in Development, Genome Instability, and Cancer

Hunter C. Herriage¹, Michael D. Rotelli¹, Robert A. Policastro¹, Kelly Hartsough², Gabriel E. Zentner¹, Claire E. Walczak², Mary A. Lilly³ and Brian R. Calvi¹ 1:Department of Biology, Indiana University, Bloomington, IN 47405; 2:Medical Sciences, Indiana University; 3:NIDDK, Bethesda Maryland

Endoreplication: a normal variant growth program in development

Developmental endoreplicating cells (devECs)

Cells also switch to endoreplication in response to conditional signals

Induced endoreplicating cells (iECs)

iECs repress apoptosis and promote genome instability

Transient endocycles: iEC return to mitosis (RTM) promotes genome instability in flies and humans

Model: Transient endocycles contribute to cancer therapy resistance and disease progression

An integrated RNA-Seq transcriptomic and genetic analysis of endocycles: downregulation of CycA-Myb-AurB regulatory network

iECs and devECs have reduced expression of Myb target genes that function at multiple steps of mitosis and cytokinesis

Knockdown of different steps of a CycA-Myb-AurB network induce different types of endoreplication

- Panel E: AurB^{dsRNA-1} was a weak RNAi knockdown, and resulted mostly in binucleate cells, indicating that chromosomes segregated by cytokinesis was repressed.
- Panel F: AurB^{dsRNA-2} was a strong RNAi knockdown, and resulted in mostly mononucleate cells, indicating that both chromosome segregation and cytokinesis was repressed.
- Panel I, J: Knockdown kinetochore proteins resulted in cell death, not endorep.

Model and Summary

- devEC and iEC repress apoptosis
- Fly and human iEC return to mitosis with high levels of CIN
- Repression of a CycA MMB –AurB pathway promotes endoreplication
- Repression of different steps of the pathway may explain the natural variation in polyploid cycles
- Endocycles may be a "normal" cell cycle that contributes to genome instability and cancer

Please contact us if you have questions!

hherriag@iu.edu
bcalvi@indiana.edu