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BPA crosslinking: site-specific protein crosslinking to identify 
direct interactions using mass spectrometry
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Functional consequences of rad6 mutations in vivo assessed 
by western blots and telomeric silencing

Most rad6 mutants showing H2Bub defects appear normal for 
DNA damage repair and N-degron proteolysis

Current model of HMD-Rad6 interaction

Figure 5. A. Structural model generated by ClusPro2.0 docking software5 showing 
interaction of Rad6 (cyan, PDB:1AYZ) with the HMD of Rtf1 (Blue, PDB:5E8B). B. Zoom of A. 
showing interaction interface. Rad6-R6, Rad6-M10, and Rtf1-F108 side chains are shown.  
C. Validation of model using in vivo BPA crosslinking. Appearance of a UV-specific band (*) 
when Rad6-F13 is substituted with BPA indicates that the residue is within ~5Å of Rtf1.

Substitutions in the Rad6 N-terminal helix disrupt HMD-
mediated stimulation of H2Bub in vitro
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Figure 2. A. rad6 mutants show global defects in H2Bub and downstream H3 methylation 
marks (K4me, K79me) independent of H2B, H3, or Rad6 protein expression levels. G6PDH 
serves as loading control. B. Using an orthogonal telomeric silencing reporter2, the same 
mutants with defects in H2Bub by western analysis have defects in chromatin architecture.
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Figure 4. A. UV sensitivity spot assays were used to assess defects of rad6 mutants in post-
replication DNA damage repair (PRR)3. Of mutants assayed, only rad6-R8A had a defect 
comparable to rad6∆ (EV). B. Schematic of N-degron reporter plasmids4. An unstable Arg-β-
Galactosidase reporter was used to assess defects in N-degron proteolysis. 
C. Quantification of activity of each rad6 mutant shows that no mutant has defects 
comparable to rad6∆ or ubr1∆, the E3 ubiquitin ligase required for N-degron proteolysis.
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Figure 3. A. H2Bub activity of alanine-substituted Rad6 proteins in an in vitro H2Bub assay1. 
B. Quantification of blots in A. Note that Rad6-R6A and Rad6-M10A (red lines) have no 
increased activity upon addition of the HMD but perform comparably to wild type Rad6 in the 
absence of HMD. C. Data shown in B. transformed to show the stimulation factor upon 
addition of HMD to the reaction. D. Data shown in B. transformed to show Bre1 stimulation 
factor. Note that Rad6-R8A and Rad6-R11A (purple lines) are unable to be stimulated by 
Bre1, the E3 ubiquitin ligase required for H2Bub.
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• The Polymerase Associated Factor 1 Complex (Paf1C) subunit Rtf1 is necessary for post-
translational mono-ubiquitylation of histone H2B K123 (H2Bub)1.

• H2Bub is required for the H3 K4 and H3 K79 di- and trimethylation, and dysregulation of 
H2Bub or these downstream marks is associated with neurological defects and cancer.

• A direct interaction between the Histone Modification Domain (HMD) of Rtf1 and the E2 
ubiquitin conjugase Rad6 is necessary for H2Bub, but the Rad6 interface was unknown.

Key Questions: What is the nature of the HMD interaction surface of Rad6? 
Is this surface specific to Rad6’s role in H2Bub?

Figure 1. A. Cartoon depiction of in vitro BPA crosslinking between Rtf1-HMD74-184 and Rad6. 
Star represents BPA, a photoreactive phenylalanine analog.  B. Western blot showing UV-
dependent crosslink between Rtf1-HMD74-184 and V5 -Rad6. C. Crosslink locations were 
mapped to Rad6’s N-terminal helix by mass spectrometry. D. Jalview alignment of Rad6 
homologs across eukaryotes shows conservation of the putative HMD-interacting region. 
Green line highlights crosslinked residues.
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• The N-terminal helix of Rad6, specifically residues R6 and M10, 
are necessary residues for productive HMD-Rad6 interactions.

• This interaction surface is specific to the H2Bub process as no 
defects in post-replication DNA damage repair or N-degron 
proteolysis were observed for rad6-R6A or rad6-M10A mutants.

• The N-terminal helix of Rad6 also makes critical contacts with 
other proteins involved in H2Bub, including Bre1.

• The high conservation of these residues implies this interaction 
is present in higher eukaryotes, but further inquiry is needed.

• This region could be a promising drug target for diseases 
associated with aberrant H2B ubiquitylation.
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