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ABSTRACT

Cytokinesis is required to complete division, and must be tightly regulated to prevent aneuploidy and cell fate changes.
Microtubule-dependent and —independent mechanisms regulate cytokinesis, and reliance on a pathway varies based A B A Average AB
on cell size, shape or fate. We found that Ran-GTP regulates the localization of human anillin (C. elegans ANI-1), a
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nals of cortical regulators to facilitate their localization and function for cytokinesis, and position the ring away from chro- 2 - £ 60 Control
matin. To determine if requirements for the Ran pathway differs depending on cell fate, we studied cytokinesis in the g T 40 —ran—3 ANA
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ering Ran-GTP levels via RAN-3 RNAI increased ingression kinetics in both AB and P1 cells, which was suppressed PARSIPARS | PAR1/PA%2 , Ex , — ST Time (s)
by co-depletion of the contractility regulators ECT-2 (RhoA-GEF) or LET-502 (Rho Kinase). Interestingly, co-depletion \ 5 o0 35 50 65 80 95 110 125 140 155 170 185 200 215
of ANI-1 suppressed RAN-3 phenotypes in AB, but not P1 cells, suggesting that they have different pathway require- Time (s) iy
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mechanisms regulating cytokinesis in cells with different fates and emphasize the need to study cytokinesis in vivo. %) on the Y-axis, and time in seconds on the X-axis. Error bars for all graphs show SEM. Importin-g
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Figure 1. A) Pathways that regulate the contractile ring for cytokinesis include spindle-dependent mechanisms and chromatin-associated Ran-GTP. Ran 1 $ Figure 5. Dot plot shows the duration of the ring assembly and furrow initiation phases for Ran-CGDP Ran-GTP —— — (ESJOAZ " Contractility
may modulate cortical contractility in C. elegans embryos by dictating where importins are free to bind NLS-containing cargo. Ran could regulate the localization and activity Ol oo am— control and ran-3 RNAI. The duration of each phase is in seconds on the Y-axis, cell type oo
of NLS-containing proteins such as ECT-2, WSP-1and ANI-1. B) Cartoons show the binding domains in human anillin and ANI-1, the C. elegans homologue (AB or P.) and condition is on the X-axis. The ring assembly phase is shown using a circle Ran-GAP
[myosin; purple, actin; blue, RhoA-GTP binding domain (RBD); magenta, C2; orange, pleckstrin homology domain (PH); blue, and nuclear localization Control AB Control P, ran-3 AB  ran-3 P marker, the furrow initiation phase is shown using a triangle marker. The average duration of
signals (NLS)]. The RBD and C2 domain are also collectively known as the AHD (anillin homology domain). Other NLS-containing cytokinesis regulators 1 1 a phase is indicated by a red line.
that could be regulated by importins include ECT-2 and WSP-1. C) Left: The importin gradient (blue, top) and Ran gradient (orange, bottom) that run Average P
opposite to each other within a cell are shown separately. Right: The cell depicts both gradients combined in a metaphase cell. D) A cartoon schematic i 1
shows how a gradient of importins free from Ran-GTP forms near the equatorial cortex during anaphase, where it influences the localization of contractile
rng components, together with RhoA and MTs (microtubules). In anaphase, the two separating Ran gradients lead to a zone of importin activity at the o 100 {escs
equatorial cortex. Here, importins help position the division plane by binding to contractile proteins (such as anillin) and facilitating their localization to the é “-*_-:T
cortex. Legend shows both gradients and lists components of the cell. *ANI-1 has been shown to bind human importin-f. 5 80 I
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Figure 2. A) Timelapse images of control C. elegans embryos expressing mCherry:HIS-58 (magenta) and GFP:PH (green) during the AB (top) and P, Figure 6. A) Images show actin localization in control AB (left) and P1 (right) cells expressing LifeAct:mKate? (magenta) and GFP:tubulin (green). B)
(bottom) division are shown. Times are shown after anaphase onset in seconds. B) Kymographs taken from a box drawn at the division plane (example Images show actin localization in ran-3 AB (left) and P1 (right) cells expressing LifeAct:mKate2 (magenta) and GFP:tubulin (green). C) Graphs show the
in A) are shown for the AB (top) and P, (bottom) division, at 5-second intervals from anaphase onset until closure. C) A cartoon schematic shows the rates of AB-cell (left) and P,-cell (right) ring closure for control cells. D) Graphs shows the rates of AB-cell (left) and P.-cell (right) ring closure under NSERC
different phases of ingression. These were determined as shown in D. D) A graph shows the average rates of AB-cell and P -cell ring closure. Tangents ran-3 RNAI treatment. Ring diameter is shown (as %) on the Y-axis, and distance along the linescan (as %) on the X-axis. One-pixel wide linescans CRSNG

are drawn to show the transition for each phase (yellow: ring assembly, green: furrow initiation, blue: ring constriction) until 40% ring diameter. were drawn from pole to pole.




