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ABSTRACT
Cytokinesis is required to complete division, and must be tightly regulated to prevent aneuploidy and cell fate changes. 
Microtubule-dependent and –independent mechanisms regulate cytokinesis, and reliance on a pathway varies based 
on cell size, shape or fate. We found that Ran-GTP regulates the localization of human anillin (C. elegans ANI-1), a 
core component of the cytokinetic ring. During mitosis, a Ran-GTP gradient is maintained with high levels around chro-
matin and low levels in the cytosol. This is because the RanGEF RCC1 (C. elegans RAN-3) is tethered to chromatin, 
while RanGAP (C. elegans RAN-2) is cytoplasmic. Our model is that importin-α/-β binds to the nuclear localization sig-
nals of cortical regulators to facilitate their localization and function for cytokinesis, and position the ring away from chro-
matin. To determine if requirements for the Ran pathway differs depending on cell fate, we studied cytokinesis in the 
early C. elegans embryo. The fertilized embryo divides asymmetrically to give rise to an anterior AB daughter fated to 
be multiple tissues, and a posterior P1 daughter fated to be germline. Imaging with high temporal resolution revealed 
that each cell has unique ingression kinetics, supported by differences in the accumulation of contractile proteins. Low-
ering Ran-GTP levels via RAN-3 RNAi increased ingression kinetics in both AB and P1 cells, which was suppressed 
by co-depletion of the contractility regulators ECT-2 (RhoA-GEF) or LET-502 (Rho Kinase). Interestingly, co-depletion 
of ANI-1 suppressed RAN-3 phenotypes in AB, but not P1 cells, suggesting that they have different pathway require-
ments. This is supported by different requirements for importin-α (IMA-3) and -β (IMB-1) in AB vs. P1 cells. We are 
currently using CRISPR to generate mutations in ANI-1 that disrupt importin-binding. Our findings reveal differences in 
mechanisms regulating cytokinesis in cells with different fates and emphasize the need to study cytokinesis in vivo.
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Figure 1. A) Pathways that regulate the contractile ring for cytokinesis include spindle-dependent mechanisms and chromatin-associated Ran-GTP. Ran 
may modulate cortical contractility in C. elegans embryos by dictating where importins are free to bind NLS-containing cargo. Ran could regulate the localization and activity 
of NLS-containing proteins such as ECT-2, WSP-1 and ANI-1. B) Cartoons show the binding domains in human anillin and ANI-1, the C. elegans homologue 
[myosin; purple, actin; blue, RhoA-GTP binding domain (RBD); magenta, C2; orange, pleckstrin homology domain (PH); blue, and nuclear localization 
signals (NLS)]. The RBD and C2 domain are also collectively known as the AHD (anillin homology domain). Other NLS-containing cytokinesis regulators 
that could be regulated by importins include ECT-2 and WSP-1. C) Left: The importin gradient (blue, top) and Ran gradient (orange, bottom) that run 
opposite to each other within a cell are shown separately. Right: The cell depicts both gradients combined in a metaphase cell. D) A cartoon schematic 
shows how a gradient of importins free from Ran-GTP forms near the equatorial cortex during anaphase, where it influences the localization of contractile 
ring components, together with RhoA and MTs (microtubules). In anaphase, the two separating Ran gradients lead to a zone of importin activity at the 
equatorial cortex. Here, importins help position the division plane by binding to contractile proteins (such as anillin) and facilitating their localization to the 
cortex. Legend shows both gradients and lists components of the cell. *ANI-1 has been shown to bind human importin-β.

CentrosomeContractile protein
Chromatin

Central spindle microtubules 

High Ran-GTP Low Ran-GTP

Ran-bound importin Cargo-bound importin

Astral microtubules

Importin-β Importin-α/βImportin-α
NLS NLS NLS

Im
po

rti
n 

gr
ad

ie
nt

Ra
n-

G
TP

 g
ra

di
en

t

C

D

RESULTS

A

G
FP

::P
H

B m
Ch

er
ry

::H
IS

-5
8 

; G
FP

::P
H

Co
nt

ro
l D

ivi
sio

ns

Time (s)

P 1
AB

30 55 95 170125

Anaphase onset

30 55 95 170125

Ingression varies depending on cell fate

AB

30 55 95 170125

D

Figure 2. A) Timelapse images of control C. elegans embryos expressing mCherry::HIS-58 (magenta) and GFP::PH (green) during the AB (top) and P1 
(bottom) division are shown. Times are shown after anaphase onset in seconds. B) Kymographs taken from a box drawn at the division plane (example 
in A) are shown for the AB (top) and P1 (bottom) division, at 5-second intervals from anaphase onset until closure. C) A cartoon schematic shows the 
different phases of ingression. These were determined as shown in D. D) A graph shows the average rates of AB-cell and P1-cell ring closure. Tangents 
are drawn to show the transition for each phase (yellow: ring assembly, green: furrow initiation, blue: ring constriction) until 40% ring diameter. 
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Figure 4. A) A graph shows the average rates of AB-cell ring closure for control (black), ran-3 RNAi (orange), ima-3 RNAi (grey), imb-1 RNAi (yellow) 
and imb-1; ima-3 RNAi (blue) cells, with ring diameter (as %) on the Y-axis, and time in seconds on the X-axis. B)  A graph shows the average rates 
of P1-cell ring closure for control (black), ran-3 (orange), ima-3 (grey), imb-1 (yellow) and imb-1; ima-3 (blue) depleted embryos, with ring diameter (as 
%) on the Y-axis, and time in seconds on the X-axis. Error bars for all graphs show SEM.
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Figure 5. Dot plot shows the duration of the ring assembly and furrow initiation phases for 
control and ran-3 RNAi. The duration of each phase is in seconds on the Y-axis, cell type 
(AB or P1) and condition is on the X-axis.  The ring assembly phase is shown using a circle 
marker, the furrow initiation phase is shown using a triangle marker. The average duration of 
a phase is indicated by a red line.
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Figure 7. A) Graphs show the average ingression kinetics in AB (top) and P1 (bottom) cells in control (black), ran-3 
(orange), ani-1 (green), and ran-3; ani-1 (blue) RNAi conditions, with ring diameter (as %) on the Y-axis, and time 
in seconds on the X-axis. B) Graphs show the average ingression kinetics in AB (left) and P1 (right) cells in control 
(black), ran-3 (orange), ect-2 (green), and ran-3; ect-2 (blue) RNAi conditions, with ring diameter (as %) on the 
Y-axis, and time in seconds on the X-axis. The hypothesized pathway of Ran regulation are shown below each graph. 
Error bars for all graphs show SEM.
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Figure 3. A) A cartoon shows mutually exclusive distribution of PAR proteins, which  sets up polarity in the one-cell embryo. B) A graph shows the average 
rates of ring closure for control AB-cells (black) and par-1 (orange), par-3 (grey), and par-6 (yellow) depleted 2-cell embryos, with ring diameter (as 
%) on the Y-axis, and time in seconds on the X-axis. Error bars for all graphs show SEM.

B

Ran-GTPRan-GDP

Ran-GAP

Ran-GEF
(RAN-3)

IMA-3
Importin-α

IMB-1
Importin-β

ANI-1
Anillin

Contractility

Ran-GTPRan-GDP

Ran-GAP

Ran-GEF
(RAN-3)

IMA-3
Importin-α

IMB-1
Importin-β

ECT-2
(RhoA GEF)

Contractility

Ran-GTPRan-GDP

Ran-GAP

Ran-GEF
(RAN-3)

IMA-3
Importin-α

IMB-1
Importin-β

ECT-2
(RhoA GEF)

Contractility

Ran-GTPRan-GDP

Ran-GAP

Ran-GEF
(RAN-3)

IMA-3
Importin-α

IMB-1
Importin-β

ANI-1
Anillin

Contractility

Ran-GTP depletion changes breadth of actin localization

Figure 6. A) Images show actin localization in control AB (left) and P1 (right) cells expressing LifeAct::mKate2 (magenta) and GFP::tubulin (green). B) 
Images show actin localization in ran-3 AB (left) and P1 (right) cells expressing LifeAct::mKate2 (magenta) and GFP::tubulin (green). C) Graphs show the 
rates of AB-cell (left) and P1-cell (right) ring closure for control cells. D)  Graphs shows the rates of AB-cell (left) and P1-cell (right) ring closure under 
ran-3 RNAi treatment.  Ring diameter is shown (as %) on the Y-axis, and distance along the linescan (as %) on the X-axis. One-pixel wide linescans 
were drawn from pole to pole.
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Figure 8. A cartoon schematic shows how the pathway 
differs in AB vs. P1 cells. Importin-β has a different 
threshold requirement in these cells, and while Ran 
signaling regulates contractility in both cells, ANI-1 is 
differently regulated in AB vs. P1 cells. 
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