Nucleolar dominance, a locus-level regulation of ribosomal DNA
expression, in D. melanogaster females
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Abstract Introduction

Ribosomal DNA (rDNA) codes for the catalytic RNA components of ribosomes and | | rDNA codes for essential RNA catalytic components of ribo-
is organized in tandem repeats of in eukaryotic genomes. In Drosophila, rDNA loci | | somes, and its transcription is important for ribosome functions
are on the X and Y chromosomes where each locus contains ~200-250 copies. A || [1]. Thus, the regulation of rDNA transcription is critical to meet
large-scale regulation of rDNA expression called nucleolar dominance, where rDNA || cellular metabolic demand. Nucleolar dominance was originally
locus is entirely silenced or activated, operates to regulate the dosage of rRNA. In || found to occur in interspecies hybrids [2-5], and has been shown
male D. melanogaster, Y rDNA is preferentially transcribed while the entire X rDNA | | to occur within a species [6-8]. In male D. melanogaster, previous
locus is silenced. In females, both rDNA loci are transcribed in larval brains. Previ- | | studies found that Y rDNA dominates over X rDNA expression [6,
ous studies were unable to characterize female nucleolar dominance in other tissues || 8]. Utilizing SNPs between X and Y rDNA loci and RNA in situ
and developmental stages due to technical limitations. Here we identify sequence || hybridization, we found that Y rDNA dominance is established
variation in an X rDNA locus and utilize these sequence differences with fluorescent || developmentally [9]. In female D. melanogaster, both X rDNA
in situ hybridization to characterize nucleolar dominance in females. We expand on || loci are expressed in larval neuroblasts [3, 9]. However, due to
previous studies and show that nucleolar dominance does not occur in X/X females | | the high sequence homology, no SNPs were found between X
in multiple tissues and throughout development. Using various chromosome com- | | rDNA loci, limiting the understanding of nucleolar dominance in
plements and compound chromosomes, we found that nucleolar dominance is not | | females. This study expands on the knowledge of female nucleo-
limited to Y chromosome or male cells. This study begins to unravel factors dictate || lar dominance to various tissues and developmental stages using
the rDNA expression pattern in both female and male and will help us understand || RNA in situ and explored potential factors impacting nucleolar
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how nucleolar dominance occurs. dominance.
Methods
RNA in situ Hybridization DNA Fluorescence in situ hybridization (DNA FISH)
- RNAin situ protocol used from Natalie et al. (2020) [9],modified - relative rDNA size was quantified using a modified protocol from
from Levesque et al. (2013) [10]. Lu et al. (2018) [11].
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Results
Figure 1. Co-dominance occurs in X/X females throughout development
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(A-D) Representative images for nucleolar dominance, scale bar = 10 ymin (A-B), 25 um in (C), 8 umin (D). (E) The cross to generate female F1 with one X chromosome with wildtype
ITS (ITS*) and one with the 24-bp deletion in ITS (ITS24). (F) Quantification of nucleolar dominance between two X rDNA in female larval and adult tissues.

Figure 2. Zhr' rDNA is silenced in female cells with Guam X
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(A) Structure of a wild-type X chromosome, a wild-type Y chromosome, and the Zhr1 chromosome based on unpublished cytological characterization data using oligonucleotide probes
and Ferree and Barbash (2009) [12]. (B) Quantification of nucleolar dominance between Guam X rDNA and Zhr1 rDNA in adult tissues comparing both cross directions (3Guam x QLe
Réduit data from Figure 1 is reproduced for comparison).

Figure 3. Guam X rDNA can dominate in male and female somatic cells
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(A-F) representative images for nucleolar dominance, scale bar = 25 ym in (A-C), 8 ymin (D), 5 ym in (E-F). Magenta arrows = ITS* rDNA-dominant cells, green arrows = ITS** (Guam

X) rDNA-dominant cells, gray arrows = co-dominant cells. Asterisks label germarium terminal filment in female and hub in males. Quantification of nucleolar dominance between various
rDNA loci on X and Y chromosomes in (D) adult anterior midgut and (E) GSCs (dGuam x 2Le Réduit data from Figure 1 is reproduced for comparison).

Figure 4. Relative rDNA size varies across chromosomes and strains
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Quantification of relative rDNA size using ratio of raw integrated for (A) 18S and (B) IGS signal density separately (see Methods). (C-F) Relationship between relative rDNA size (18S or
IGS) difference and nucleolar dominance (in adult midgut or GSC). yw X and yw Y rDNA nucleolar dominance data referenced from Warsinger-Pepe et al. (2020) [9]. All other nucleolar
dominance data replicated from previous figures.

Discussion Summary
We characterized nucleolar dominance in female D. melanogaster, ex- Developmental Time

panding on our previous knowledge to other tissue types and devel-
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opmental stages. Using a compound chromosome and various chro- 3 v ) M (g):} M g:(; 9@ @
mosome complements, we identified an X chromosome that is able to v X X
dominate over both X and Y rDNA loci. Our data suggests that rDNA size &
may play a tissue-specific role in establishing dominance. Furthermore, Y

our data suggests that elements within the Guam X rDNA may strongly Q x ) - o5 x S
dictate its ability to dominate over other rDNA loci. What these elements %} N \%j \ \%

are and how they influence nucleolar dominance await future investiga-
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